Field theory approach to eigenstate thermalization in random quantum
circuits
- URL: http://arxiv.org/abs/2210.06480v1
- Date: Wed, 12 Oct 2022 18:00:00 GMT
- Title: Field theory approach to eigenstate thermalization in random quantum
circuits
- Authors: Yunxiang Liao and Victor Galitski
- Abstract summary: We use field-theoretic methods to explore the statistics of eigenfunctions of the Floquet operator for a large family of quantum circuits.
The correlation function of the quasienergy eigenstates is calculated and shown to exhibit random matrix circular unitary ensemble statistics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use field-theoretic methods to explore the statistics of eigenfunctions of
the Floquet operator for a large family of Floquet random quantum circuits. The
correlation function of the quasienergy eigenstates is calculated and shown to
exhibit random matrix circular unitary ensemble statistics, which is consistent
with the analogue of Berry's conjecture for quantum circuits. This quantity
determines all key metrics of quantum chaos, such as the spectral form factor
and thermalizing time-dependence of the expectation value of an arbitrary
observable. It also allows us to explicitly show that the matrix elements of
local operators satisfy the eigenstate thermalization hypothesis (ETH); i.e.,
the variance of the off-diagonal matrix elements of such operators is
exponentially small in the system size. These results represent a proof of ETH
for the family of Floquet random quantum circuits at a physical level of rigor.
An outstanding open question for this and most of other sigma-model
calculations is a mathematically rigorous proof of the validity of the
saddle-point approximation in the large-N limit.
Related papers
- Exact Entanglement in the Driven Quantum Symmetric Simple Exclusion
Process [0.0]
Entanglement properties of driven quantum systems can potentially differ from the equilibrium situation due to long range coherences.
We derive exact formulae for its mutual information between different subsystems in the steady state and show that it satisfies a volume law.
Surprisingly, the QSSEP entanglement properties only depend on data related to its transport properties and we suspect that such a relation might hold for more general mesoscopic systems.
arXiv Detail & Related papers (2023-04-21T14:37:14Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Effective field theory of random quantum circuits [0.0]
This work develops an effective field theory for a large class of random quantum circuits.
The method is used to explicitly derive universal random matrix behavior of a large family of random circuits.
arXiv Detail & Related papers (2022-04-06T21:03:46Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics
of spectral functions [0.0]
The eigenstate thermalization hypothesis provides to date the most successful description of thermalization in isolated quantum systems.
We study the distribution of matrix elements for a class of operators in dual-unitary quantum circuits.
arXiv Detail & Related papers (2021-03-22T09:46:46Z) - Quadratic-exponential functionals of Gaussian quantum processes [1.7360163137925997]
quadratic-exponential functionals (QEFs) arise as robust performance criteria in control problems.
We develop a randomised representation for the QEF using a Karhunen-Loeve expansion of the quantum process.
For stationary Gaussian quantum processes, we establish a frequency-domain formula for the QEF rate.
arXiv Detail & Related papers (2021-03-16T18:58:39Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Theory of Ergodic Quantum Processes [0.0]
We consider general ergodic sequences of quantum channels with arbitrary correlations and non-negligible decoherence.
We compute the entanglement spectrum across any cut, by which the bipartite entanglement entropy can be computed exactly.
Other physical implications of our results are that most Floquet phases of matter are metastable and that noisy random circuits in the large depth limit will be trivial as far as their quantum entanglement is concerned.
arXiv Detail & Related papers (2020-04-29T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.