Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants
- URL: http://arxiv.org/abs/2210.06539v1
- Date: Wed, 12 Oct 2022 19:10:43 GMT
- Title: Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants
- Authors: Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, Ruizhe
Zhang
- Abstract summary: We develop quantum algorithms for sampling logconcave distributions and for estimating their normalizing constants.
We exploit quantum analogs of the Monte Carlo method and quantum walks.
We also prove a $1/epsilon1-o(1)$ quantum lower bound for estimating normalizing constants.
- Score: 8.453228628258778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a convex function $f\colon\mathbb{R}^{d}\to\mathbb{R}$, the problem of
sampling from a distribution $\propto e^{-f(x)}$ is called log-concave
sampling. This task has wide applications in machine learning, physics,
statistics, etc. In this work, we develop quantum algorithms for sampling
log-concave distributions and for estimating their normalizing constants
$\int_{\mathbb{R}^d}e^{-f(x)}\mathrm{d} x$. First, we use underdamped Langevin
diffusion to develop quantum algorithms that match the query complexity (in
terms of the condition number $\kappa$ and dimension $d$) of analogous
classical algorithms that use gradient (first-order) queries, even though the
quantum algorithms use only evaluation (zeroth-order) queries. For estimating
normalizing constants, these algorithms also achieve quadratic speedup in the
multiplicative error $\epsilon$. Second, we develop quantum Metropolis-adjusted
Langevin algorithms with query complexity $\widetilde{O}(\kappa^{1/2}d)$ and
$\widetilde{O}(\kappa^{1/2}d^{3/2}/\epsilon)$ for log-concave sampling and
normalizing constant estimation, respectively, achieving polynomial speedups in
$\kappa,d,\epsilon$ over the best known classical algorithms by exploiting
quantum analogs of the Monte Carlo method and quantum walks. We also prove a
$1/\epsilon^{1-o(1)}$ quantum lower bound for estimating normalizing constants,
implying near-optimality of our quantum algorithms in $\epsilon$.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
Gradient descent is one of the most basic algorithms for solving continuous optimization problems.
We propose a quantum algorithm that returns an $varepsilon$-approximation of its gradient with query complexity $widetildeO (1/varepsilon)$.
We also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method.
arXiv Detail & Related papers (2024-07-04T11:03:48Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum Algorithms for the Pathwise Lasso [1.8058773918890538]
We present a novel quantum high-dimensional linear regression algorithm based on the classical LARS (Least Angle Regression) pathwise algorithm.
Our quantum algorithm provides the full regularisation path as the penalty term varies, but quadratically faster per iteration under specific conditions.
We prove, via an approximate version of the KKT conditions and a duality gap, that the LARS algorithm is robust to errors.
arXiv Detail & Related papers (2023-12-21T18:57:54Z) - Robustness of Quantum Algorithms for Nonconvex Optimization [7.191453718557392]
We show that quantum algorithms can find an $epsilon$-SOSP with poly-logarithmic,, or exponential number of queries in $d.
We also characterize the domains where quantum algorithms can find an $epsilon$-SOSP with poly-logarithmic,, or exponential number of queries in $d.
arXiv Detail & Related papers (2022-12-05T19:10:32Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Higher-order Derivatives of Weighted Finite-state Machines [68.43084108204741]
This work examines the computation of higher-order derivatives with respect to the normalization constant for weighted finite-state machines.
We provide a general algorithm for evaluating derivatives of all orders, which has not been previously described in the literature.
Our algorithm is significantly faster than prior algorithms.
arXiv Detail & Related papers (2021-06-01T19:51:55Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.