Toward the application of XAI methods in EEG-based systems
- URL: http://arxiv.org/abs/2210.06554v4
- Date: Sat, 18 May 2024 19:45:12 GMT
- Title: Toward the application of XAI methods in EEG-based systems
- Authors: Andrea Apicella, Francesco Isgrò, Andrea Pollastro, Roberto Prevete,
- Abstract summary: Non-stationarity of EEG signals can lead to poor generalisation performance in BCI classification systems.
XAI methods can locate and transform the relevant characteristics of the input for the goal of classification.
Results show that many relevant components found by XAI methods are shared across the sessions and can be used to build a system able to generalise better.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An interesting case of the well-known Dataset Shift Problem is the classification of Electroencephalogram (EEG) signals in the context of Brain-Computer Interface (BCI). The non-stationarity of EEG signals can lead to poor generalisation performance in BCI classification systems used in different sessions, also from the same subject. In this paper, we start from the hypothesis that the Dataset Shift problem can be alleviated by exploiting suitable eXplainable Artificial Intelligence (XAI) methods to locate and transform the relevant characteristics of the input for the goal of classification. In particular, we focus on an experimental analysis of explanations produced by several XAI methods on an ML system trained on a typical EEG dataset for emotion recognition. Results show that many relevant components found by XAI methods are shared across the sessions and can be used to build a system able to generalise better. However, relevant components of the input signal also appear to be highly dependent on the input itself.
Related papers
- Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
We propose a simple yet efficient machine learning-based approach for the exemplary problem of hand gesture classification based on brain signals.
We demonstrate that this approach generalizes to different subjects with both EEG and ECoG data and achieves superior accuracy in the range of 92.74-97.07%.
arXiv Detail & Related papers (2023-04-21T16:23:40Z) - Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods [0.0]
Non-stationarity of EEG signals is a critical issue and can lead to the dataset shift problem.
418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases.
The studies with the best results in terms of average classification accuracy were identified.
arXiv Detail & Related papers (2022-12-16T22:48:37Z) - Learning-Based UE Classification in Millimeter-Wave Cellular Systems
With Mobility [67.81523988596841]
Millimeter-wave cellular communication requires beamforming procedures that enable alignment of the transmitter and receiver beams as the user equipment (UE) moves.
For efficient beam tracking it is advantageous to classify users according to their traffic and mobility patterns.
Research to date has demonstrated efficient ways of machine learning based UE classification.
arXiv Detail & Related papers (2021-09-13T12:00:45Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
A novel deep learning framework capable of doing subject-independent emotion recognition is presented.
A convolutional neural network (CNN) with attention framework is presented for performing the task.
The proposed approach has been validated using publicly available datasets.
arXiv Detail & Related papers (2021-06-07T09:41:15Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.