Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods
- URL: http://arxiv.org/abs/2212.08744v3
- Date: Mon, 19 Aug 2024 08:45:26 GMT
- Title: Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods
- Authors: Andrea Apicella, Pasquale Arpaia, Giovanni D'Errico, Davide Marocco, Giovanna Mastrati, Nicola Moccaldi, Roberto Prevete,
- Abstract summary: Non-stationarity of EEG signals is a critical issue and can lead to the dataset shift problem.
418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases.
The studies with the best results in terms of average classification accuracy were identified.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A systematic review on machine-learning strategies for improving generalizability (cross-subjects and cross-sessions) electroencephalography (EEG) based in emotion classification was realized. In this context, the non-stationarity of EEG signals is a critical issue and can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this issue, mainly based on transfer learning methods. 418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques for generalization in EEG-based emotion assessment. Among these papers, 75 were found eligible based on their relevance to the problem. Studies lacking a specific cross-subject and cross-session validation strategy and making use of other biosignals as support were excluded. On the basis of the selected papers' analysis, a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief discussion on the different ML approaches involved. The studies with the best results in terms of average classification accuracy were identified, supporting that transfer learning methods seem to perform better than other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii) psychological screening of the experimental sample on the classifier performances.
Related papers
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - A Supervised Information Enhanced Multi-Granularity Contrastive Learning Framework for EEG Based Emotion Recognition [14.199298112101802]
This study introduces a novel Supervised Info-enhanced Contrastive Learning framework for EEG based Emotion Recognition (SICLEER)
We propose a joint learning model combining self-supervised contrastive learning loss and supervised classification loss.
arXiv Detail & Related papers (2024-05-12T11:51:00Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
We propose a novel Joint Contrastive learning framework with Feature Alignment to address cross-corpus EEG-based emotion recognition.
In the pre-training stage, a joint domain contrastive learning strategy is introduced to characterize generalizable time-frequency representations of EEG signals.
In the fine-tuning stage, JCFA is refined in conjunction with downstream tasks, where the structural connections among brain electrodes are considered.
arXiv Detail & Related papers (2024-04-15T08:21:17Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Toward the application of XAI methods in EEG-based systems [0.0]
Non-stationarity of EEG signals can lead to poor generalisation performance in BCI classification systems.
XAI methods can locate and transform the relevant characteristics of the input for the goal of classification.
Results show that many relevant components found by XAI methods are shared across the sessions and can be used to build a system able to generalise better.
arXiv Detail & Related papers (2022-10-12T19:47:34Z) - On The Effects Of Data Normalisation For Domain Adaptation On EEG Data [0.0]
This paper focuses on the impact of data normalisation, or standardisation strategies applied together with Domain Adaption (DA) methods.
We experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods.
It results that the choice of the normalisation strategy plays a key role on the performances in DA scenarios.
arXiv Detail & Related papers (2022-10-03T16:51:12Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.