論文の概要: OpenCQA: Open-ended Question Answering with Charts
- arxiv url: http://arxiv.org/abs/2210.06628v1
- Date: Wed, 12 Oct 2022 23:37:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 14:11:05.290946
- Title: OpenCQA: Open-ended Question Answering with Charts
- Title(参考訳): OpenCQA: チャートで回答するオープンエンドの質問
- Authors: Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Ko Leong, Jia Qing Tan,
Enamul Hoque, Shafiq Joty
- Abstract要約: 我々はOpenCQAと呼ばれる新しいタスクを導入し、そこではグラフに関するオープンな質問にテキストで答えることが目的である。
3つの実践的な設定の下で,一連のベースラインを実装し,評価する。
結果から,トップパフォーマンスモデルは通常,流動的かつコヒーレントなテキストを生成することが示された。
- 参考スコア(独自算出の注目度): 6.7038829115674945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Charts are very popular to analyze data and convey important insights. People
often analyze visualizations to answer open-ended questions that require
explanatory answers. Answering such questions are often difficult and
time-consuming as it requires a lot of cognitive and perceptual efforts. To
address this challenge, we introduce a new task called OpenCQA, where the goal
is to answer an open-ended question about a chart with descriptive texts. We
present the annotation process and an in-depth analysis of our dataset. We
implement and evaluate a set of baselines under three practical settings. In
the first setting, a chart and the accompanying article is provided as input to
the model. The second setting provides only the relevant paragraph(s) to the
chart instead of the entire article, whereas the third setting requires the
model to generate an answer solely based on the chart. Our analysis of the
results show that the top performing models generally produce fluent and
coherent text while they struggle to perform complex logical and arithmetic
reasoning.
- Abstract(参考訳): チャートはデータを分析し、重要な洞察を伝えるのに非常に人気があります。
人々はしばしば、説明的な答えを必要とするオープンエンドの質問に答えるために可視化を分析する。
このような質問への回答は、多くの認知的、知覚的努力を必要とするため、しばしば困難で時間がかかります。
この課題に対処するために、私たちはopencqaと呼ばれる新しいタスクを紹介します。
アノテーションプロセスとデータセットの詳細な分析について紹介する。
3つの実用的な設定の下で一連のベースラインを実装し,評価する。
第1設定では、モデルへの入力として、チャート及び付随する物品が提供される。
第2の設定は、記事全体ではなく、関連する段落のみをチャートに提供し、第3の設定は、チャートのみに基づいて応答を生成するモデルを必要とする。
結果分析の結果,上位のモデルでは,複雑な論理的・算術的推論に苦しむ中,一般的に流麗でコヒーレントなテキストを生成することが判明した。
関連論文リスト
- CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXivは、arXiv論文の2,323のチャートを含む総合的な評価スイートである。
品質を確保するために、すべてのチャートと質問は、人間の専門家によって手書きされ、キュレーションされ、検証されます。
その結果、最強のプロプライエタリモデルの推論スキルの間に、かなり過小評価されていたギャップが明らかとなった。
論文 参考訳(メタデータ) (2024-06-26T17:50:11Z) - Enhancing Question Answering on Charts Through Effective Pre-training Tasks [26.571522748519584]
グラフやプロットに適用した場合の現在のVisualQAモデルの制限に対処する。
以上の結果から,既存のモデルでは,図の構造的・視覚的文脈に関する疑問に答える上で,特に性能が低いことが示唆された。
本稿では,構造的・視覚的知識と数値的疑問の理解の両面から,既存のモデルを強制する3つの簡単な事前学習タスクを提案する。
論文 参考訳(メタデータ) (2024-06-14T14:40:10Z) - QAGCF: Graph Collaborative Filtering for Q&A Recommendation [58.21387109664593]
質問と回答(Q&A)プラットフォームは通常、ユーザの知識獲得のニーズを満たすために質問と回答のペアを推奨する。
これにより、ユーザの振る舞いがより複雑になり、Q&Aレコメンデーションの2つの課題が提示される。
グラフニューラルネットワークモデルであるQ&Answer Graph Collaborative Filtering (QAGCF)を導入する。
論文 参考訳(メタデータ) (2024-06-07T10:52:37Z) - DCQA: Document-Level Chart Question Answering towards Complex Reasoning
and Common-Sense Understanding [19.713647367008143]
文書レベルの質問応答(DCQA)という新しいタスクを導入する。
新たに開発されたベンチマークデータセットは、チャートを幅広いスタイルで統合した50,010の合成文書からなる。
本稿では,テーブルデータ,リッチな色集合,および基本的な質問テンプレートを利用する強力な質問応答生成エンジンの開発について述べる。
論文 参考訳(メタデータ) (2023-10-29T11:38:08Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
VQA(Document Visual Question Answering)は、自然言語による質問に答えるために、視覚的に豊富なドキュメントを理解することを目的としている。
我々は3,067の文書ページと16,558の質問応答ペアからなる新しいドキュメントVQAデータセットTAT-DQAを紹介する。
我々は,テキスト,レイアウト,視覚画像など,多要素の情報を考慮に入れたMHSTという新しいモデルを開発し,異なるタイプの質問にインテリジェントに対処する。
論文 参考訳(メタデータ) (2022-07-25T01:43:19Z) - Chart Question Answering: State of the Art and Future Directions [0.0]
チャート質問回答 (Chart Question Answering, CQA) システムは、通常、チャートと自然言語の質問を入力として、回答を自動的に生成する。
本稿では,グラフ質問応答問題に着目した現状研究を体系的にレビューする。
論文 参考訳(メタデータ) (2022-05-08T22:54:28Z) - ChartQA: A Benchmark for Question Answering about Charts with Visual and
Logical Reasoning [7.192233658525916]
9.6Kの人書き質問と23.1Kの人書きチャートの要約から生成される質問に関するベンチマークを示す。
本稿では,視覚的特徴とグラフのデータテーブルを組み合わせた2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-03-19T05:00:30Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
我々は,質問文,質問文,回答文のペア間のスコアを計算するための最先端(SOTA)モデルを訓練し,統合する。
オンライン推論は、目に見えないクエリのAS2タスクを解決するために実行される。
論文 参考訳(メタデータ) (2022-02-16T05:59:53Z) - Classification-Regression for Chart Comprehension [16.311371103939205]
チャート質問応答(CQA)は、チャート理解を評価するために用いられるタスクである。
分類と回帰を共同で学習する新しいモデルを提案する。
私たちのモデルのエッジは、特に語彙外回答の質問に重点を置いています。
論文 参考訳(メタデータ) (2021-11-29T18:46:06Z) - AnswerSumm: A Manually-Curated Dataset and Pipeline for Answer
Summarization [73.91543616777064]
Stack OverflowやYahoo!のようなコミュニティ質問回答(CQA)フォーラムには、幅広いコミュニティベースの質問に対する回答の豊富なリソースが含まれている。
回答の要約の1つのゴールは、回答の視点の範囲を反映した要約を作成することである。
本研究は,専門言語学者による解答要約のための4,631個のCQAスレッドからなる新しいデータセットを導入する。
論文 参考訳(メタデータ) (2021-11-11T21:48:02Z) - Graph-Based Tri-Attention Network for Answer Ranking in CQA [56.42018099917321]
本稿では,グラフに基づく新しい三者関係ネットワーク,すなわちGTANを提案し,回答ランキングのスコアを生成する。
実世界の3つのCQAデータセットの実験では、GTANは最先端の回答ランキング法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-03-05T10:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。