論文の概要: CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2406.18521v1
- Date: Wed, 26 Jun 2024 17:50:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 12:40:34.590611
- Title: CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs
- Title(参考訳): CharXiv:マルチモーダルLLMにおけるリアルチャート理解におけるチャートギャップ
- Authors: Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, Danqi Chen,
- Abstract要約: CharXivは、arXiv論文の2,323のチャートを含む総合的な評価スイートである。
品質を確保するために、すべてのチャートと質問は、人間の専門家によって手書きされ、キュレーションされ、検証されます。
その結果、最強のプロプライエタリモデルの推論スキルの間に、かなり過小評価されていたギャップが明らかとなった。
- 参考スコア(独自算出の注目度): 62.84082370758761
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an over-optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress. Project page and leaderboard: https://charxiv.github.io/
- Abstract(参考訳): チャート理解は、科学論文の分析や財務報告などの現実的なタスクにMLLM(Multimodal Large Language Models)を適用する際に重要な役割を果たす。
しかし、既存のデータセットはテンプレートベースの質問で単純化され、均質なチャートにフォーカスすることが多く、過度に最適化された進捗測定に繋がる。
オープンソースモデルはこれらのベンチマークで強力なプロプライエタリモデルより優れているように見えるが、わずかに異なるチャートや疑問を持つ単純なストレステストは、パフォーマンスを最大34.5%低下させる可能性があることを実証した。
本稿では,自然,挑戦,多彩なArXiv論文のチャートを含む総合的な評価スイートCharXivを提案する。
CharXivには2つの質問がある。
1)基本チャート要素の検査と説明的質問
2) 図中の複雑な視覚要素にまたがって情報を合成する必要がある理由付け質問。
品質を確保するために、すべてのチャートと質問は、人間の専門家によって手書きされ、キュレーションされ、検証されます。
その結果、47.1%の精度を持つ最強プロプライエタリモデルの推論技術(GPT-4o)と、29.2%の精度を持つ最強のオープンソースモデル(InternVL Chat V1.5)との間には、実質的かつ過小評価されたギャップがあることが判明した。
すべてのモデルは、既存のMLLMのチャート理解能力の弱点を浮き彫りにして、80.5%の人間のパフォーマンスよりもはるかに遅れている。
CharXivは、より現実的で忠実な進捗測定を提供することで、MLLMチャート理解の今後の研究を促進することを願っている。
プロジェクトページとリーダーボード:https://charxiv.github.io/
関連論文リスト
- Distill Visual Chart Reasoning Ability from LLMs to MLLMs [38.62832112530892]
マルチモーダル大言語モデル(MLLM)における複雑なチャートQ&Aタスクの解決には高度な視覚的推論能力が必要である
我々は,LLMからMLLMへの視覚的推論能力を蒸留するための費用効率,効率的,スケーラブルなデータ合成法であるCode-as-Intermediary Translation (CIT)を提案する。
我々は、テキストベースの合成技術を用いて、チャート作成コードを構築し、3kの推論集約チャートと20kのQ&Aペアを含むデータセットであるReachQAを作成した。
論文 参考訳(メタデータ) (2024-10-24T14:50:42Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness [47.68358935792437]
チャート質問応答(CQA)は、ビジュアル言語理解の重要な領域である。
この分野の現在のビジュアル言語モデル(VLM)は、まだ未調査のままである。
本稿では,包括的データセット上での最先端VLMの評価を行う。
論文 参考訳(メタデータ) (2024-07-15T20:29:24Z) - Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs [11.19928977117624]
自然言語は、バーやラインチャートのようなデータ視覚化のためのコミュニケーションの強力な補完的モダリティである。
近年,チャート質問応答,チャート要約,ファクトチェックなど,さまざまなダウンストリームタスクが導入されている。
これらのタスクはユニークな課題であり、視覚言語推論とグラフデータテーブル、ビジュアルエンコーディング、自然言語プロンプトの微妙な理解の両方を要求する。
本稿では,最近開発された大規模視覚言語モデル(LVLM)の総合的な評価を,チャート理解と推論のタスクに対して行った。
論文 参考訳(メタデータ) (2024-06-01T01:43:30Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [54.82612435284695]
我々は、チャート領域における既製のマルチモーダル言語モデル(MLLM)の能力をベンチマークする。
ChartXは18種類のチャートタイプ,7つのチャートタスク,22のディシプリナトピック,高品質なチャートデータを含むマルチモーダルな評価セットである。
我々は、解釈可能なパターンに強く依存するマルチモーダルタスクに対する新しい視点を提供するため、ChartVLMを開発した。
論文 参考訳(メタデータ) (2024-02-19T14:48:23Z) - ChartBench: A Benchmark for Complex Visual Reasoning in Charts [36.492851648081405]
MLLM(Multimodal Large Language Models)は画像の理解と生成に優れた能力を示している。
現在のベンチマークでは、限定的なチャートタイプと不適切なメトリクスのため、MLLMのチャート理解を正確に評価することができない。
複雑な視覚的推論によってチャートの理解とデータの信頼性を評価するための総合的なベンチマークであるChartBenchを提案する。
論文 参考訳(メタデータ) (2023-12-26T07:20:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。