Weighted Distillation with Unlabeled Examples
- URL: http://arxiv.org/abs/2210.06711v1
- Date: Thu, 13 Oct 2022 04:08:56 GMT
- Title: Weighted Distillation with Unlabeled Examples
- Authors: Fotis Iliopoulos, Vasilis Kontonis, Cenk Baykal, Gaurav Menghani, Khoa
Trinh, Erik Vee
- Abstract summary: Distillation with unlabeled examples is a popular and powerful method for training deep neural networks in settings where the amount of labeled data is limited.
This paper proposes a principled approach for addressing this issue based on a ''debiasing'' reweighting of the student's loss function tailored to the distillation training paradigm.
- Score: 15.825078347452024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distillation with unlabeled examples is a popular and powerful method for
training deep neural networks in settings where the amount of labeled data is
limited: A large ''teacher'' neural network is trained on the labeled data
available, and then it is used to generate labels on an unlabeled dataset
(typically much larger in size). These labels are then utilized to train the
smaller ''student'' model which will actually be deployed. Naturally, the
success of the approach depends on the quality of the teacher's labels, since
the student could be confused if trained on inaccurate data. This paper
proposes a principled approach for addressing this issue based on a
''debiasing'' reweighting of the student's loss function tailored to the
distillation training paradigm. Our method is hyper-parameter free,
data-agnostic, and simple to implement. We demonstrate significant improvements
on popular academic datasets and we accompany our results with a theoretical
analysis which rigorously justifies the performance of our method in certain
settings.
Related papers
- Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Partial-Label Regression [54.74984751371617]
Partial-label learning is a weakly supervised learning setting that allows each training example to be annotated with a set of candidate labels.
Previous studies on partial-label learning only focused on the classification setting where candidate labels are all discrete.
In this paper, we provide the first attempt to investigate partial-label regression, where each training example is annotated with a set of real-valued candidate labels.
arXiv Detail & Related papers (2023-06-15T09:02:24Z) - Are labels informative in semi-supervised learning? -- Estimating and
leveraging the missing-data mechanism [4.675583319625962]
Semi-supervised learning is a powerful technique for leveraging unlabeled data to improve machine learning models.
It can be affected by the presence of informative'' labels, which occur when some classes are more likely to be labeled than others.
We propose a novel approach to address this issue by estimating the missing-data mechanism and using inverse propensity weighting to debias any SSL algorithm.
arXiv Detail & Related papers (2023-02-15T09:18:46Z) - SLaM: Student-Label Mixing for Distillation with Unlabeled Examples [15.825078347452024]
We present a principled method for knowledge distillation with unlabeled examples that we call Student-Label Mixing (SLaM)
SLaM consistently improves over prior approaches by evaluating it on several standard benchmarks.
We give an algorithm improving the best-known sample complexity for learning halfspaces with margin under random classification noise.
arXiv Detail & Related papers (2023-02-08T00:14:44Z) - Semi-supervised Learning using Robust Loss [0.0]
We suggest a semi-supervised training strategy for leveraging both manually labeled data and extra unlabeled data.
In contrast to the existing approaches, we apply robust loss for the automated labeled data to compensate for the uneven data quality.
We show that our proposed strategy improves the model performance by compensating for the uneven quality of labels in image classification.
arXiv Detail & Related papers (2022-03-03T05:34:32Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
Adaptation [87.60688582088194]
We propose a novel Self-Supervised Noisy Label Learning method.
Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin.
arXiv Detail & Related papers (2021-02-23T10:51:45Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
We present a self-training framework, SLADE, to improve retrieval performance by leveraging additional unlabeled data.
We first train a teacher model on the labeled data and use it to generate pseudo labels for the unlabeled data.
We then train a student model on both labels and pseudo labels to generate final feature embeddings.
arXiv Detail & Related papers (2020-11-20T08:26:10Z) - Iterative Label Improvement: Robust Training by Confidence Based
Filtering and Dataset Partitioning [5.1293809610257775]
State-of-the-art, high capacity deep neural networks require large amounts of labelled training data.
They are also highly susceptible to label errors in this data.
We propose a novel meta training and labelling scheme that is able to use inexpensive unlabelled data.
arXiv Detail & Related papers (2020-02-07T10:42:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.