A Survey on Explainable Anomaly Detection
- URL: http://arxiv.org/abs/2210.06959v2
- Date: Tue, 11 Jul 2023 11:42:13 GMT
- Title: A Survey on Explainable Anomaly Detection
- Authors: Zhong Li, Yuxuan Zhu, Matthijs van Leeuwen
- Abstract summary: This work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques.
We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique.
- Score: 13.303115111810266
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the past two decades, most research on anomaly detection has focused on
improving the accuracy of the detection, while largely ignoring the
explainability of the corresponding methods and thus leaving the explanation of
outcomes to practitioners. As anomaly detection algorithms are increasingly
used in safety-critical domains, providing explanations for the high-stakes
decisions made in those domains has become an ethical and regulatory
requirement. Therefore, this work provides a comprehensive and structured
survey on state-of-the-art explainable anomaly detection techniques. We propose
a taxonomy based on the main aspects that characterize each explainable anomaly
detection technique, aiming to help practitioners and researchers find the
explainable anomaly detection method that best suits their needs.
Related papers
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
The proposed method is validated on an open dataset for industrial anomaly detection.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - Anomaly Detection in Graph Structured Data: A Survey [0.46040036610482665]
We discuss a comprehensive overview of anomaly detection techniques on graph data.
We present a new taxonomy that categorizes the different state-of-the-art anomaly detection methods.
arXiv Detail & Related papers (2024-05-10T01:30:25Z) - Explainable Anomaly Detection in Images and Videos: A Survey [49.07140708026425]
Anomaly detection and localization of visual data, including images and videos, are of great significance in machine learning academia and applied real-world scenarios.
Despite the rapid development of visual anomaly detection techniques in recent years, the interpretations of these black-box models and reasonable explanations of why anomalies can be distinguished out are scarce.
This paper provides the first survey concentrated on explainable visual anomaly detection methods.
arXiv Detail & Related papers (2023-02-13T20:17:41Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z) - Applications of Generative Adversarial Networks in Anomaly Detection: A
Systematic Literature Review [28.752089275446462]
generative adversarial networks (GANs) have attracted a great deal of attention in anomaly detection research.
In this paper, we present a systematic literature review of the applications of GANs in anomaly detection.
arXiv Detail & Related papers (2021-10-22T21:48:48Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z) - Dependency-based Anomaly Detection: a General Framework and Comprehensive Evaluation [33.31923133201812]
This paper introduces Dependency-based Anomaly Detection (DepAD)
DepAD reframes unsupervised anomaly detection as supervised feature selection and prediction tasks.
Two DepAD algorithms emerge as all-rounders and superior performers in handling a wide range of datasets.
arXiv Detail & Related papers (2020-11-13T01:39:44Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods.
We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges.
arXiv Detail & Related papers (2020-07-06T02:21:16Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.