CUF: Continuous Upsampling Filters
- URL: http://arxiv.org/abs/2210.06965v1
- Date: Thu, 13 Oct 2022 12:45:51 GMT
- Title: CUF: Continuous Upsampling Filters
- Authors: Cristina Vasconcelos and Kevin Swersky and Mark Matthews and Milad
Hashemi and Cengiz Oztireli and Andrea Tagliasacchi
- Abstract summary: In this paper, we consider one of the most important operations in image processing: upsampling.
We propose to parameterize upsampling kernels as neural fields.
This parameterization leads to a compact architecture that obtains a 40-fold reduction in the number of parameters when compared with competing arbitrary-scale super-resolution architectures.
- Score: 25.584630142930123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural fields have rapidly been adopted for representing 3D signals, but
their application to more classical 2D image-processing has been relatively
limited. In this paper, we consider one of the most important operations in
image processing: upsampling. In deep learning, learnable upsampling layers
have extensively been used for single image super-resolution. We propose to
parameterize upsampling kernels as neural fields. This parameterization leads
to a compact architecture that obtains a 40-fold reduction in the number of
parameters when compared with competing arbitrary-scale super-resolution
architectures. When upsampling images of size 256x256 we show that our
architecture is 2x-10x more efficient than competing arbitrary-scale
super-resolution architectures, and more efficient than sub-pixel convolutions
when instantiated to a single-scale model. In the general setting, these gains
grow polynomially with the square of the target scale. We validate our method
on standard benchmarks showing such efficiency gains can be achieved without
sacrifices in super-resolution performance.
Related papers
- Lighten CARAFE: Dynamic Lightweight Upsampling with Guided Reassemble Kernels [18.729177307412645]
We propose a lightweight upsampling operation, termed Dynamic Lightweight Upsampling (DLU)
Experiments on several mainstream vision tasks show that our DLU achieves comparable and even better performance to the original CARAFE.
arXiv Detail & Related papers (2024-10-29T15:35:14Z) - Inf-DiT: Upsampling Any-Resolution Image with Memory-Efficient Diffusion Transformer [36.715376148053785]
In this work, we propose a unidirectional block attention mechanism that can adjust the memory overhead during the inference process.
Building on this module, we adopt the DiT structure for upsampling and develop an infinite super-resolution model.
Our model achieves SOTA performance in generating ultra-high-resolution images in both machine and human evaluation.
arXiv Detail & Related papers (2024-05-07T13:35:58Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - CoordFill: Efficient High-Resolution Image Inpainting via Parameterized
Coordinate Querying [52.91778151771145]
In this paper, we try to break the limitations for the first time thanks to the recent development of continuous implicit representation.
Experiments show that the proposed method achieves real-time performance on the 2048$times$2048 images using a single GTX 2080 Ti GPU.
arXiv Detail & Related papers (2023-03-15T11:13:51Z) - {\mu}Split: efficient image decomposition for microscopy data [50.794670705085835]
muSplit is a dedicated approach for trained image decomposition in the context of fluorescence microscopy images.
We introduce lateral contextualization (LC), a novel meta-architecture that enables the memory efficient incorporation of large image-context.
We apply muSplit to five decomposition tasks, one on a synthetic dataset, four others derived from real microscopy data.
arXiv Detail & Related papers (2022-11-23T11:26:24Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Learning strides in convolutional neural networks [34.20666933112202]
This work introduces DiffStride, the first downsampling layer with learnable strides.
Experiments on audio and image classification show the generality and effectiveness of our solution.
arXiv Detail & Related papers (2022-02-03T16:03:36Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramids is a block-autoregressive approach with scale-specific representations to encode the joint distribution of image pixels.
It yields state-of-the-art results for density estimation on various image datasets, especially for high-resolution data.
For CelebA-HQ 1024 x 1024, we observe that the density estimates are improved to 44% of the baseline despite sampling speeds superior even to easily parallelizable flow-based models.
arXiv Detail & Related papers (2021-10-17T10:47:29Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
Image deblurring is a computer vision problem that aims to recover a sharp image from a blurred image.
Our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution.
We propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details.
arXiv Detail & Related papers (2021-10-12T07:58:10Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.