論文の概要: Self-explaining deep models with logic rule reasoning
- arxiv url: http://arxiv.org/abs/2210.07024v1
- Date: Thu, 13 Oct 2022 13:35:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 15:05:02.602012
- Title: Self-explaining deep models with logic rule reasoning
- Title(参考訳): 論理規則推論を用いた自己説明深部モデル
- Authors: Seungeon Lee, Xiting Wang, Sungwon Han, Xiaoyuan Yi, Xing Xie,
Meeyoung Cha
- Abstract要約: SELORは、与えられた深層モデルに自己説明機能を統合するためのフレームワークである。
人間の正確さ」とは、モデルが予測に与える理由に人間が同意する程度を指す。
- 参考スコア(独自算出の注目度): 34.26828172603353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SELOR, a framework for integrating self-explaining capabilities
into a given deep model to achieve both high prediction performance and human
precision. By "human precision", we refer to the degree to which humans agree
with the reasons models provide for their predictions. Human precision affects
user trust and allows users to collaborate closely with the model. We
demonstrate that logic rule explanations naturally satisfy human precision with
the expressive power required for good predictive performance. We then
illustrate how to enable a deep model to predict and explain with logic rules.
Our method does not require predefined logic rule sets or human annotations and
can be learned efficiently and easily with widely-used deep learning modules in
a differentiable way. Extensive experiments show that our method gives
explanations closer to human decision logic than other methods while
maintaining the performance of deep learning models.
- Abstract(参考訳): 本稿では,自己説明機能を与えられた深層モデルに統合し,高い予測性能と人間の精度を両立するフレームワークであるselorを提案する。
人間の正確さ(human precision)とは、モデルが予測する理由に人間が同意する程度を指す。
人間の精度はユーザーの信頼に影響を与え、ユーザーはモデルと密接に連携することができる。
論理規則の説明は自然に人間の正確さを、優れた予測性能に必要な表現力で満たしていることを示す。
次に、深いモデルが論理ルールで予測と説明を可能にする方法を説明します。
本手法は,事前定義された論理規則セットや人間のアノテーションを必要とせず,広く使用されている深層学習モジュールを用いて効率的に,容易に学習することができる。
広範な実験により,深層学習モデルの性能を維持しつつ,他の手法よりも人間の決定論理に近い説明を与えることが示された。
関連論文リスト
- AURA: Natural Language Reasoning for Aleatoric Uncertainty in Rationales [0.0]
答の背後にある合理性は、モデル決定を説明するだけでなく、複雑な推論タスクをうまく推理するために言語モデルを促進する。
モデルパフォーマンスを促進するのに十分な根拠が忠実である程度を見積もるのは簡単ではない。
本稿では,不完全理理性に対処する方法を提案する。
論文 参考訳(メタデータ) (2024-02-22T07:12:34Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Longer Fixations, More Computation: Gaze-Guided Recurrent Neural
Networks [12.57650361978445]
人間はさまざまなペースでテキストを読み、機械学習モデルはそれぞれのトークンを同じように扱う。
本稿では,この直感を固定誘導並列RNNやレイヤを用いた新しいモデルに変換する。
興味深いことに、ニューラルネットワークによって予測される固定期間は、人間の固定と多少似ている。
論文 参考訳(メタデータ) (2023-10-31T21:32:11Z) - Emulating the Human Mind: A Neural-symbolic Link Prediction Model with
Fast and Slow Reasoning and Filtered Rules [4.979279893937017]
本稿では,FaSt-FLiPというニューラル・シンボリックモデルを提案する。
我々の目標は、リンク予測の強化のための論理モデルとニューラルモデルを組み合わせることである。
論文 参考訳(メタデータ) (2023-10-21T12:45:11Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - To what extent do human explanations of model behavior align with actual
model behavior? [91.67905128825402]
モデル推論決定の人間による説明が、モデルが実際にこれらの決定を下す方法と一致する程度を調べた。
自然言語の人間の説明が入力語に対するモデル感度とどのように一致するかを定量化する2つのアライメント指標を定義した。
モデルと人間の説明との整合は、NLI上のモデルの精度によって予測されないことが判明した。
論文 参考訳(メタデータ) (2020-12-24T17:40:06Z) - Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
Prediction [49.254162397086006]
画像に基づく年齢予測課題における視覚的満足度に基づく説明について検討する。
モデル予測の提示により,人間の精度が向上することが判明した。
しかし、様々な種類の説明は、人間の正確さやモデルの信頼を著しく変えることができない。
論文 参考訳(メタデータ) (2020-07-23T20:39:40Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
大規模な事前学習言語モデル(LM)は推論能力を得るが、制御は困難である。
本研究では,暗黙的,事前学習された知識と明示的な自然言語文を併用して,体系的推論を確実に行うことができることを示す。
我々の研究は、シンプルな自然言語文を追加することで、モデルを簡単に修正できるユーザと対話することで、常に改善されるオープンドメインシステムへの道を開く。
論文 参考訳(メタデータ) (2020-06-11T17:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。