論文の概要: Searching for Better Database Queries in the Outputs of Semantic Parsers
- arxiv url: http://arxiv.org/abs/2210.07201v1
- Date: Thu, 13 Oct 2022 17:20:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 15:58:35.831967
- Title: Searching for Better Database Queries in the Outputs of Semantic Parsers
- Title(参考訳): セマンティックパーサの出力におけるより良いデータベースクエリの探索
- Authors: Anton Osokin, Irina Saparina, Ramil Yarullin
- Abstract要約: 本稿では,テスト時に生成したクエリを評価する外部基準にアクセスできる場合を考える。
クエリがエラーなしに実行されることをチェックすることから、一連のテストでクエリを検証することまで、その基準は様々である。
我々は、最先端のセマンティクスにアプローチを適用し、異なるデータセットですべてのテストを通過する多くのクエリを見つけることができると報告します。
- 参考スコア(独自算出の注目度): 16.221439565760058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of generating a database query from a question in natural language
suffers from ambiguity and insufficiently precise description of the goal. The
problem is amplified when the system needs to generalize to databases unseen at
training. In this paper, we consider the case when, at the test time, the
system has access to an external criterion that evaluates the generated
queries. The criterion can vary from checking that a query executes without
errors to verifying the query on a set of tests. In this setting, we augment
neural autoregressive models with a search algorithm that looks for a query
satisfying the criterion. We apply our approach to the state-of-the-art
semantic parsers and report that it allows us to find many queries passing all
the tests on different datasets.
- Abstract(参考訳): 自然言語の質問からデータベースクエリを生成するタスクは、曖昧さと目標の十分な正確な記述に悩まされる。
システムはトレーニング時に見えないデータベースに一般化する必要がある場合、問題は増幅される。
本稿では,テスト時にシステムが生成したクエリを評価する外部基準にアクセスする場合について考察する。
クエリがエラーなしに実行されることをチェックすることから、一連のテストでクエリを検証することまで、その基準は様々である。
そこで本研究では,この基準を満たすクエリを求める探索アルゴリズムを用いて,ニューラル自己回帰モデルを拡張した。
我々は、最先端のセマンティックパーサにアプローチを適用し、異なるデータセットですべてのテストに合格する多数のクエリを見つけることができることを報告します。
関連論文リスト
- Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations [85.81295563405433]
言語モデルユーザーは、しばしば仕様を欠いたクエリを発行するが、クエリが発行されたコンテキストは明示的ではない。
提案手法は,不特定クエリを取り巻くコンテキストを合成的に構築し,評価中に提供するプロトコルである。
その結果,1) モデルペア間の勝利率の反転,2) モデルペア間の勝利率の低下,2) パターンなどの表面レベル基準に基づく判断の少ない評価,3) 様々な文脈におけるモデル行動に関する新たな洞察の提供,といった結果が得られた。
論文 参考訳(メタデータ) (2024-11-11T18:58:38Z) - DAGE: DAG Query Answering via Relational Combinator with Logical Constraints [24.60431781360608]
DAGEと呼ばれるDAGクエリに対するクエリ埋め込み手法を提案する。
DAGEは2つのノード間の可能性のある複数のパスを、トレーニング可能なオペレータで単一のパスに結合する。
既存のクエリ埋め込みメソッド上にDAGEを実装することが可能であることを示す。
論文 参考訳(メタデータ) (2024-10-29T15:02:48Z) - AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries [56.82807063333088]
我々は,新たなベンチマークであるAMBROSIAを導入し,テキスト・ツー・オープン・プログラムの開発を促進することを期待する。
私たちのデータセットには、3種類のあいまいさ(スコープのあいまいさ、アタッチメントのあいまいさ、あいまいさ)を示す質問が含まれている。
いずれの場合も、データベースのコンテキストが提供されてもあいまいさは持続する。
これは、スクラッチからデータベースを制御して生成する、新しいアプローチによって実現される。
論文 参考訳(メタデータ) (2024-06-27T10:43:04Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
DAQuは、元のクエリを複数のテーブルにまたがるさまざまな(クエリ関連の)メタデータで拡張する。
リレーショナルデータベースのメタデータを組み込む様々な検索シナリオにおいてDAQuを検証する。
論文 参考訳(メタデータ) (2024-06-23T05:02:21Z) - Testing Database Engines via Query Plan Guidance [6.789710498230718]
本稿では,自動テストの"興味深い"テストケースへの誘導を目的としたクエリプランガイダンス(QPG)の概念を提案する。
我々は,成熟した,広く使用されている,多様なデータベースシステム –DBite,TiDB,Cockroach – に適用した。
論文 参考訳(メタデータ) (2023-12-29T08:09:47Z) - QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set
Operations [36.70770411188946]
QUESTは、暗黙のセット操作を備えた3357の自然言語クエリのデータセットである。
データセットは、クエリで言及された複数の制約と、ドキュメントの対応するエビデンスにマッチするようにモデルに挑戦する。
我々は,現代の検索システムを分析し,それらがこのようなクエリに苦しむ場合が多いことを発見した。
論文 参考訳(メタデータ) (2023-05-19T14:19:32Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
クエリ理解は、ユーザの検索意図を探索し、ユーザが最も望まれる情報を発見できるようにする上で、重要な役割を果たす。
近年、プレトレーニング言語モデル (PLM) は様々な自然言語処理タスクを進歩させてきた。
本稿では,クエリコンテンツとクエリグラフの両方を活用可能な,グラフ強化事前学習フレームワークGE-BERTを提案する。
論文 参考訳(メタデータ) (2022-04-03T16:50:30Z) - SPARQLing Database Queries from Intermediate Question Decompositions [7.475027071883912]
自然言語の質問をデータベースクエリに変換するために、ほとんどのアプローチは、完全に注釈付けされたトレーニングセットに依存している。
データベースの中間問題表現を基盤として,この負担を軽減する。
我々のパイプラインは、自然言語質問を中間表現に変換するセマンティックと、訓練不能なトランスパイラをQLSPARクエリ言語に変換する2つの部分から構成される。
論文 参考訳(メタデータ) (2021-09-13T17:57:12Z) - "What makes my queries slow?": Subgroup Discovery for SQL Workload
Analysis [1.3124513975412255]
サブグループディスカバリーに根ざした独自のアプローチを導入する。
この汎用データマイニングフレームワークのインスタンス化と開発方法を示す。
インタラクティブな知識発見のための可視化ツールも提供しています。
論文 参考訳(メタデータ) (2021-08-09T09:44:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。