論文の概要: Database-Augmented Query Representation for Information Retrieval
- arxiv url: http://arxiv.org/abs/2406.16013v1
- Date: Sun, 23 Jun 2024 05:02:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:23:47.259104
- Title: Database-Augmented Query Representation for Information Retrieval
- Title(参考訳): 情報検索のためのデータベース拡張クエリ表現
- Authors: Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, Jong C. Park,
- Abstract要約: データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
DAQuは、元のクエリを複数のテーブルにまたがるさまざまな(クエリ関連の)メタデータで拡張する。
リレーショナルデータベースのメタデータを組み込む様々な検索シナリオにおいてDAQuを検証する。
- 参考スコア(独自算出の注目度): 59.57065228857247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information retrieval models that aim to search for the documents relevant to the given query have shown many successes, which have been applied to diverse tasks. However, the query provided by the user is oftentimes very short, which challenges the retrievers to correctly fetch relevant documents. To tackle this, existing studies have proposed expanding the query with a couple of additional (user-related) features related to the query. Yet, they may be suboptimal to effectively augment the query, though there is plenty of information available to augment it in a relational database. Motivated by this, we present a novel retrieval framework called Database-Augmented Query representation (DAQu), which augments the original query with various (query-related) metadata across multiple tables. In addition, as the number of features in the metadata can be very large and there is no order among them, we encode them with our graph-based set encoding strategy, which considers hierarchies of features in the database without order. We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database, demonstrating that ours significantly enhances overall retrieval performance, compared to existing query augmentation methods.
- Abstract(参考訳): 与えられたクエリに関連する文書を検索することを目的とした情報検索モデルは、様々なタスクに適用された多くの成功例を示してきた。
しかし、ユーザによって提供されるクエリは、しばしば非常に短いため、検索者が関連ドキュメントを正しく取得することを困難にしている。
これを解決するために、既存の研究では、クエリに関連するいくつかの追加機能(ユーザ関連)でクエリを拡張することを提案した。
しかし、それらはクエリを効果的に拡張するのに最適ではないかもしれませんが、リレーショナルデータベースでそれを拡張できる情報はたくさんあります。
そこで本研究では,データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
さらに,メタデータに含まれる特徴の数が非常に多く,その中に順序がないため,順序のないデータベースの特徴の階層性を考慮したグラフベースの集合符号化戦略でそれらを符号化する。
我々は,関係データベースからのメタデータを組み込む多種多様な検索シナリオにおいてDAQuを検証し,既存のクエリ拡張手法と比較して検索性能を大幅に向上させることを示した。
関連論文リスト
- Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
知識グラフ(KG)から構造化文書関係を付加したLLMを拡張した知識対応クエリ拡張フレームワークを提案する。
文書テキストをリッチなKGノード表現として活用し、KAR(Knowledge-Aware Retrieval)のための文書ベースの関係フィルタリングを利用する。
論文 参考訳(メタデータ) (2024-10-17T17:03:23Z) - Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search [32.35446999027349]
我々は、より優れたクエリ表現モデルをトレーニングするために、リライトされたクエリと会話検索データの関連判断の両方を活用する。
提案したモデル --Query Representation Alignment Conversational Retriever(QRACDR)は、8つのデータセットでテストされる。
論文 参考訳(メタデータ) (2024-07-29T17:14:36Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
本稿では,検索ログの強化とモデリングの強化を目的としたクエリ指向データ拡張を提案する。
検索コンテキストの最も重要な部分を変更することで補足的なトレーニングペアを生成する。
我々は、現在のクエリを変更するためのいくつかの戦略を開発し、その結果、様々な難易度で新しいトレーニングデータを得る。
論文 参考訳(メタデータ) (2024-07-04T08:08:33Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation [16.170841777591345]
Dianpingのようなほとんどのソーシャル検索シナリオでは、検索関連性のモデリングは常に2つの課題に直面している。
まず、クエリベースの要約と、クエリなしで文書の要約をトピック関連モデルの入力として取り上げる。
そこで我々は,大規模言語モデル(LLM)の言語理解と生成能力を利用して,既存のトレーニングデータにおけるクエリやドキュメントからのクエリを書き換え,生成する。
論文 参考訳(メタデータ) (2024-04-03T10:05:47Z) - Beyond Extraction: Contextualising Tabular Data for Efficient
Summarisation by Language Models [0.0]
Retrieval-Augmented Generation アーキテクチャの従来の利用は、様々な文書から情報を取得するのに有効であることが証明されている。
本研究では,RAGに基づくシステムにおいて,複雑なテーブルクエリの精度を高めるための革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-04T16:16:14Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
クエリ理解は、ユーザの検索意図を探索し、ユーザが最も望まれる情報を発見できるようにする上で、重要な役割を果たす。
近年、プレトレーニング言語モデル (PLM) は様々な自然言語処理タスクを進歩させてきた。
本稿では,クエリコンテンツとクエリグラフの両方を活用可能な,グラフ強化事前学習フレームワークGE-BERTを提案する。
論文 参考訳(メタデータ) (2022-04-03T16:50:30Z) - Using Query Expansion in Manifold Ranking for Query-Oriented
Multi-Document Summarization [3.146785346730256]
本稿では,この問題を解くために,多様体ランキングに組み合わされたクエリ拡張手法を提案する。
本手法では,検索語自体と知識ベースであるWordNetの情報を同義語で拡張するだけでなく,文書自体の情報を様々な方法で拡張する。
さらに,単語の重複度と単語間の近接度を用いて文間の類似度を算出する。
論文 参考訳(メタデータ) (2021-07-31T02:20:44Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。