論文の概要: Amortized Inference for Heterogeneous Reconstruction in Cryo-EM
- arxiv url: http://arxiv.org/abs/2210.07387v1
- Date: Thu, 13 Oct 2022 22:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 16:08:26.852029
- Title: Amortized Inference for Heterogeneous Reconstruction in Cryo-EM
- Title(参考訳): Cryo-EMにおける異所性再建の推測
- Authors: Axel Levy, Gordon Wetzstein, Julien Martel, Frederic Poitevin, Ellen
D. Zhong
- Abstract要約: 低温電子顕微鏡(cryo-EM)は、タンパク質やその他の生命の構成要素の力学に関する洞察を提供する。
生物分子のポーズ、3次元構造、配座の不均一性を共同で推定するアルゴリズムの課題は未解決のままである。
この方法であるCryoFIREは、不動化フレームワークで未知のポーズを伴って、ab initioheregeneous Restructionを行う。
精度を損なうことなく、何百万もの画像を含むデータセットに対して、1桁のスピードアップを提供できることを示す。
- 参考スコア(独自算出の注目度): 36.911133113707045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryo-electron microscopy (cryo-EM) is an imaging modality that provides
unique insights into the dynamics of proteins and other building blocks of
life. The algorithmic challenge of jointly estimating the poses, 3D structure,
and conformational heterogeneity of a biomolecule from millions of noisy and
randomly oriented 2D projections in a computationally efficient manner,
however, remains unsolved. Our method, cryoFIRE, performs ab initio
heterogeneous reconstruction with unknown poses in an amortized framework,
thereby avoiding the computationally expensive step of pose search while
enabling the analysis of conformational heterogeneity. Poses and conformation
are jointly estimated by an encoder while a physics-based decoder aggregates
the images into an implicit neural representation of the conformational space.
We show that our method can provide one order of magnitude speedup on datasets
containing millions of images without any loss of accuracy. We validate that
the joint estimation of poses and conformations can be amortized over the size
of the dataset. For the first time, we prove that an amortized method can
extract interpretable dynamic information from experimental datasets.
- Abstract(参考訳): クライオ電子顕微鏡(Cryo-Electron microscopy)は、タンパク質やその他の生命の構成要素の力学に関するユニークな洞察を提供する画像モダリティである。
数万の雑音およびランダム指向の2次元投影から生体分子のポーズ, 3次元構造, コンフォメーション的不均一性を計算効率良く推定するアルゴリズム的課題は未解決のままである。
本手法は不定形不均質なポーズを用いた非定形不均質な再構成を非定形的枠組みで実行し,コンフォメーション的不均質性の解析を可能とし,計算コストの高いポーズ探索のステップを回避する。
ポーズとコンフォーメーションはエンコーダによって共同で推定され、物理ベースのデコーダは画像をコンフォーメーション空間の暗黙の神経表現に集約する。
精度を損なうことなく、何百万もの画像を含むデータセットに対して、1桁のスピードアップを提供できることを示す。
ポーズとコンフォーメーションの合同推定がデータセットのサイズに対して補正可能であることを検証した。
実験データセットから解釈可能な動的情報を抽出できるアモータライズされた手法を初めて証明した。
関連論文リスト
- CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM [3.424647356090208]
核電子顕微鏡(cryo-EM)は、画像データから高分解能の3次元生体分子構造を決定するための強力な技術である。
CryoBenchは、Cryo-EMにおける異種再構築のためのデータセット、メトリクス、パフォーマンスベンチマークのスイートである。
論文 参考訳(メタデータ) (2024-08-10T11:48:14Z) - CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with Semi-Amortized Pose Inference [30.195615398809043]
Cryo-EMは、高分子錯体の原子分解能3次元構造を決定する方法として人気が高まっている。
近年のCryo-EMの進歩は、アモートされた推論がポーズを予測するために使われている深層学習に焦点が当てられている。
本稿では,半アモタイズ法であるCryoSPINを提案する。この手法では,復元はアモタイズされた推論から始まり,自動デコードに切り替える。
論文 参考訳(メタデータ) (2024-06-15T00:44:32Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement [14.973360669658561]
本稿では,自己教師付き変分オートエンコーダアーキテクチャであるHetACUMNを提案する。
シミュレーションデータセットの結果,HetACUMNは,他のアモータイズ法や非アモータイズ法よりも正確なコンフォメーション分類が得られた。
論文 参考訳(メタデータ) (2023-08-09T13:41:30Z) - CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D
Molecular Volumes from Real Cryo-EM Images [30.738209997049395]
粒子ポーズの勾配に基づく最適化と単一粒子Creo-EMデータからの電子散乱電位を用いた等質コンフォーメーションのためのアブイニシアト再構成アルゴリズムであるCreoAIを紹介する。
CryoAIは、シミュレーションデータと実験データの両方に対して、最先端のCryo-EMソルバと同等の結果を得る。
論文 参考訳(メタデータ) (2022-03-15T17:58:03Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Distributed optimization for nonrigid nano-tomography [0.40631409309544836]
本研究では,ナノスケールの試料の投影アライメント,アンワーピング,正規化を併用した共同解析器を提案する。
投影データの一貫性は、ファーンバックのアルゴリズムによって推定される密度の高い光流によって制御され、より少ないアーティファクトで鋭いサンプル再構成をもたらす。
論文 参考訳(メタデータ) (2020-07-11T19:22:43Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM)アルゴリズムは、形態的再構成操作とタイトウェーブレットフレーム変換を組み込んでいる。
特徴集合とその理想値の間の残差に対して$ell_0$正規化項を付与することにより、改良されたFCMアルゴリズムを提案する。
合成, 医用, カラー画像に対する実験結果から, 提案アルゴリズムは効率的かつ効率的であり, 他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-14T10:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。