Physically Feasible Vehicle Trajectory Prediction
- URL: http://arxiv.org/abs/2104.14679v1
- Date: Thu, 29 Apr 2021 22:13:41 GMT
- Title: Physically Feasible Vehicle Trajectory Prediction
- Authors: Harshayu Girase, Jerrick Hoang, Sai Yalamanchi, and Micol
Marchetti-Bowick
- Abstract summary: We describe three important properties -- physical realism guarantees, system maintainability, and sample efficiency.
We introduce PTNet, a novel approach for vehicle trajectory prediction that is a hybrid of the classical pure pursuit path tracking algorithm and modern graph-based neural networks.
- Score: 3.3748750222488657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the future motion of actors in a traffic scene is a crucial part
of any autonomous driving system. Recent research in this area has focused on
trajectory prediction approaches that optimize standard trajectory error
metrics. In this work, we describe three important properties -- physical
realism guarantees, system maintainability, and sample efficiency -- which we
believe are equally important for developing a self-driving system that can
operate safely and practically in the real world. Furthermore, we introduce
PTNet (PathTrackingNet), a novel approach for vehicle trajectory prediction
that is a hybrid of the classical pure pursuit path tracking algorithm and
modern graph-based neural networks. By combining a structured robotics
technique with a flexible learning approach, we are able to produce a system
that not only achieves the same level of performance as other state-of-the-art
methods on traditional trajectory error metrics, but also provides strong
guarantees about the physical realism of the predicted trajectories while
requiring half the amount of data. We believe focusing on this new class of
hybrid approaches is an useful direction for developing and maintaining a
safety-critical autonomous driving system.
Related papers
- Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - KI-PMF: Knowledge Integrated Plausible Motion Forecasting [11.311561045938546]
Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric.
Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle.
Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations.
arXiv Detail & Related papers (2023-10-18T14:40:52Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
Trajectory prediction is one of the key components of the autonomous driving software stack.
In this paper, a self-aware trajectory prediction method is proposed.
The proposed method performed well in terms of self-awareness, memory footprint, and real-time performance.
arXiv Detail & Related papers (2023-05-16T03:53:23Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.