論文の概要: Just Round: Quantized Observation Spaces Enable Memory Efficient
Learning of Dynamic Locomotion
- arxiv url: http://arxiv.org/abs/2210.08065v2
- Date: Sat, 22 Apr 2023 16:33:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 23:38:12.651381
- Title: Just Round: Quantized Observation Spaces Enable Memory Efficient
Learning of Dynamic Locomotion
- Title(参考訳): ジャストラウンド:動的ロコモーションのメモリ効率向上を実現する量子化された観測空間
- Authors: Lev Grossman and Brian Plancher
- Abstract要約: 深層強化学習モデルのトレーニングは計算とメモリ集約である。
観測空間の量子化は、学習性能に影響を与えることなく、全体のメモリコストを4.2倍に削減する。
- 参考スコア(独自算出の注目度): 0.7106986689736827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) is one of the most powerful tools for
synthesizing complex robotic behaviors. But training DRL models is incredibly
compute and memory intensive, requiring large training datasets and replay
buffers to achieve performant results. This poses a challenge for the next
generation of field robots that will need to learn on the edge to adapt to
their environment. In this paper, we begin to address this issue through
observation space quantization. We evaluate our approach using four simulated
robot locomotion tasks and two state-of-the-art DRL algorithms, the on-policy
Proximal Policy Optimization (PPO) and off-policy Soft Actor-Critic (SAC) and
find that observation space quantization reduces overall memory costs by as
much as 4.2x without impacting learning performance.
- Abstract(参考訳): 深部強化学習(DRL)は、複雑なロボット動作を合成するための最も強力なツールの1つである。
しかし、DRLモデルのトレーニングは信じられないほど計算とメモリ集約であり、大きなトレーニングデータセットとバッファを再生する必要がある。
これは、環境に適応するためにエッジで学ぶ必要がある次世代のフィールドロボットにとって、課題となる。
本稿では,観測空間の量子化によってこの問題に対処し始める。
本手法は,4つのロボットロコモーションタスクと2つの最先端DRLアルゴリズム,PPO(On-policy Proximal Policy Optimization)とSAC(Off-policy Soft Actor-Critic)を用いて評価し,学習性能に影響を与えることなく,観測空間の量子化が全体のメモリコストを最大4.2倍削減することを発見した。
関連論文リスト
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
論文 参考訳(メタデータ) (2024-11-19T01:23:52Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
現実的な四足歩行データセットにおける11のオフライン強化学習アルゴリズムをベンチマークした。
実験の結果,ORLアルゴリズムはモデルフリーのRLに比べて競争性能がよいことがわかった。
提案するベンチマークは,実世界の歩行作業におけるORLアルゴリズムの性能をテスト・評価するための開発プラットフォームとして機能する。
論文 参考訳(メタデータ) (2023-09-13T13:18:29Z) - R^3: On-device Real-Time Deep Reinforcement Learning for Autonomous
Robotics [9.2327813168753]
本稿では、デバイス上でのリアルタイムDRLトレーニングにおけるタイミング、メモリ、アルゴリズム性能を管理するための総合的なソリューションR3を提案する。
R3は、(i)動的バッチサイズを最適化するためのデッドライン駆動フィードバックループ、(ii)メモリフットプリントを削減し、より大きなリプレイバッファサイズを実現するための効率的なメモリ管理、(iii)ランタイム分析によってガイドされるランタイムコーディネータ、およびメモリリソース予約を調整するランタイムプロファイラを採用している。
論文 参考訳(メタデータ) (2023-08-29T05:48:28Z) - Decision S4: Efficient Sequence-Based RL via State Spaces Layers [87.3063565438089]
我々は、S4モデルの訓練効率を維持しつつ、軌道で機能する非政治的な訓練手順を提案する。
反復的に訓練され、長距離依存の恩恵を受け、新しい安定したアクター・クリティカルなメカニズムをベースとした、オンデマンドのトレーニング手順。
論文 参考訳(メタデータ) (2023-06-08T13:03:53Z) - Real World Offline Reinforcement Learning with Realistic Data Source [33.7474988142367]
オフライン強化学習(ORL)は、任意の事前生成経験から学習する能力があるため、ロボット学習に非常に有望である。
現在のORLベンチマークは、ほぼ完全にシミュレーションされており、オンラインRLエージェントのリプレイバッファや、サブ最適トラジェクトリのような、探索されたデータセットを使用している。
本研究(Real-ORL)では、密接に関連するタスクの安全な操作から収集されたデータは、現実のロボット学習のためのより実用的なデータソースであると仮定する。
論文 参考訳(メタデータ) (2022-10-12T17:57:05Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
効率的な強化学習のためのストアド埋め込み(SEER)について紹介します。
SEERは、既存の非政治深層強化学習方法の簡単な修正です。
計算とメモリを大幅に節約しながら、SEERがRLizableエージェントのパフォーマンスを低下させないことを示します。
論文 参考訳(メタデータ) (2021-03-04T08:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。