論文の概要: Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning
- arxiv url: http://arxiv.org/abs/2411.12155v1
- Date: Tue, 19 Nov 2024 01:23:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:23.862170
- Title: Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning
- Title(参考訳): データ効率の良いロボット学習のための行動系列を用いた強化学習
- Authors: Younggyo Seo, Pieter Abbeel,
- Abstract要約: 本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
- 参考スコア(独自算出の注目度): 62.3886343725955
- License:
- Abstract: Training reinforcement learning (RL) agents on robotic tasks typically requires a large number of training samples. This is because training data often consists of noisy trajectories, whether from exploration or human-collected demonstrations, making it difficult to learn value functions that understand the effect of taking each action. On the other hand, recent behavior-cloning (BC) approaches have shown that predicting a sequence of actions enables policies to effectively approximate noisy, multi-modal distributions of expert demonstrations. Can we use a similar idea for improving RL on robotic tasks? In this paper, we introduce a novel RL algorithm that learns a critic network that outputs Q-values over a sequence of actions. By explicitly training the value functions to learn the consequence of executing a series of current and future actions, our algorithm allows for learning useful value functions from noisy trajectories. We study our algorithm across various setups with sparse and dense rewards, and with or without demonstrations, spanning mobile bi-manual manipulation, whole-body control, and tabletop manipulation tasks from BiGym, HumanoidBench, and RLBench. We find that, by learning the critic network with action sequences, our algorithm outperforms various RL and BC baselines, in particular on challenging humanoid control tasks.
- Abstract(参考訳): ロボット作業における強化学習(RL)エージェントの訓練は通常、多数のトレーニングサンプルを必要とする。
これは、訓練データはしばしば、探索や人為的な実証から、ノイズの多い軌跡から成り立っているため、それぞれの行動を取る効果を理解するための価値関数を学ぶのが難しくなるためである。
一方、最近の行動閉鎖法(BC)では、一連の行動を予測することで、専門家によるデモンストレーションのノイズの多いマルチモーダルな分布を効果的に近似することができることが示されている。
ロボット作業におけるRLの改善には,同じようなアイデアが利用できるのだろうか?
本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
提案アルゴリズムは,biGym,HumanoidBench,RLBenchのモバイルバイマニュアル操作,全体制御,テーブルトップ操作タスクにまたがる,疎密かつ高密度な報酬と実演の有無で,様々な設定で検討する。
評価ネットワークをアクションシーケンスで学習することで、アルゴリズムは様々なRLおよびBCベースライン、特に難解なヒューマノイド制御タスクよりも優れることがわかった。
関連論文リスト
- Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRLはシーケンシャルな意思決定問題を解決するためのフレームワークである。
強化学習と潜在変数生成モデルの組み合わせを利用する。
最終方針訓練の性能に最も影響を与える生成モデルの特徴を実験的に決定する。
論文 参考訳(メタデータ) (2022-04-18T22:02:32Z) - Continuous Control with Action Quantization from Demonstrations [35.44893918778709]
強化学習(Reinforcement Learning, RL)では、連続的な行動とは対照的に、離散的な行動はより複雑な探索問題をもたらす。
本稿では, 連続的な行動空間の離散化を学習するために, デモからのアクション量子化(AQuaDem)を提案する。
提案手法は,実演付きRL,プレイデータ付きRL,環境下での人間の演奏を実証するが,特定の課題を解決しないImitation Learningと,3つの異なる設定で評価する。
論文 参考訳(メタデータ) (2021-10-19T17:59:04Z) - Reset-Free Reinforcement Learning via Multi-Task Learning: Learning
Dexterous Manipulation Behaviors without Human Intervention [67.1936055742498]
マルチタスク学習は、リセットフリーの学習スキームをはるかに複雑な問題に効果的にスケールできることを示す。
この研究は、人間の介入なしにRLを用いて現実世界での巧妙な操作行動を学ぶ能力を示す。
論文 参考訳(メタデータ) (2021-04-22T17:38:27Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
単一のロボットアームがピクセルからスパースリワード操作ポリシーを学習できることを示します。
デモは10回しかなく、単一のロボットアームがピクセルからスパースリワード操作のポリシーを学習できることを示しています。
論文 参考訳(メタデータ) (2020-12-14T22:18:39Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
相対エントロピーQラーニング(Relative Entropy Q-Learning、REQ)は、オフラインおよび従来のRLアルゴリズムのアイデアを組み合わせた単純なポリシーアルゴリズムである。
本稿では、REQが、デモから一般の政治外RL、オフラインRL、およびRLにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2020-10-16T18:48:49Z) - Probabilistic Active Meta-Learning [15.432006404678981]
先行経験に基づくタスク選択をメタ学習アルゴリズムに導入する。
シミュレーションロボット実験の強いベースラインと比較して,本手法がデータ効率を向上させるという実証的証拠を提供する。
論文 参考訳(メタデータ) (2020-07-17T12:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。