論文の概要: QuAnt: Quantum Annealing with Learnt Couplings
- arxiv url: http://arxiv.org/abs/2210.08114v1
- Date: Thu, 13 Oct 2022 17:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 18:00:06.096766
- Title: QuAnt: Quantum Annealing with Learnt Couplings
- Title(参考訳): QuAnt: 学習結合による量子アニーリング
- Authors: Marcel Seelbach Benkner, Maximilian Krahn, Edith Tretschk, Zorah
L\"ahner, Michael Moeller, Vladislav Golyanik
- Abstract要約: 我々はデータからQUBOフォームを導出するのではなく、勾配のバックプロパゲーションを通して学習する。
本稿では,グラフマッチングや2次元点雲のアライメント,3次元回転推定といった多種多様な問題に対する学習QUBOの利点を示す。
- 参考スコア(独自算出の注目度): 18.40480332882025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern quantum annealers can find high-quality solutions to combinatorial
optimisation objectives given as quadratic unconstrained binary optimisation
(QUBO) problems. Unfortunately, obtaining suitable QUBO forms in computer
vision remains challenging and currently requires problem-specific analytical
derivations. Moreover, such explicit formulations impose tangible constraints
on solution encodings. In stark contrast to prior work, this paper proposes to
learn QUBO forms from data through gradient backpropagation instead of deriving
them. As a result, the solution encodings can be chosen flexibly and compactly.
Furthermore, our methodology is general and virtually independent of the
specifics of the target problem type. We demonstrate the advantages of learnt
QUBOs on the diverse problem types of graph matching, 2D point cloud alignment
and 3D rotation estimation. Our results are competitive with the previous
quantum state of the art while requiring much fewer logical and physical
qubits, enabling our method to scale to larger problems. The code and the new
dataset will be open-sourced.
- Abstract(参考訳): 現代の量子アンネラは、2次非制約バイナリ最適化(QUBO)問題として与えられる組合せ最適化目的に対する高品質な解を見つけることができる。
残念ながら、コンピュータビジョンで適切なQUBOフォームを得るのは難しいままであり、現在、問題固有の解析的導出が必要である。
さらに、そのような明示的な定式化は解の符号化に有意な制約を課す。
従来の研究とは対照的に,本論文では,データからQUBO形式を導出する代わりに,勾配のバックプロパゲーションを通じて学習することを提案する。
これにより、溶液符号化を柔軟かつコンパクトに選択することができる。
さらに,本手法は対象問題の種類にほぼ依存せず,汎用的な手法である。
本稿では,グラフマッチングや2次元点雲のアライメント,3次元回転推定といった多種多様な問題に対する学習QUBOの利点を示す。
我々の結果は従来の量子状態と競合するが、論理と物理の量子ビットははるかに少なく、より大きな問題にスケールできる。
コードと新しいデータセットは、オープンソース化される。
関連論文リスト
- Quantum Algorithms for Drone Mission Planning [0.0]
ミッションプランニングはしばしば、一連のミッション目標を達成するためにISR(Intelligence, Surveillance and Reconnaissance)資産の使用を最適化する。
このような解を見つけることはNP-Hard問題であり、古典的なコンピュータでは効率的に解けないことが多い。
我々は、現在の古典的手法に対してスピードアップを提供する可能性のある、短期量子アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2024-09-27T10:58:25Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
産業規模でロボット軌道計画問題を解く。
我々のエンドツーエンドソリューションは、高度に多目的なランダムキーアルゴリズムとモデル積み重ねとアンサンブル技術を統合している。
我々は、後者が我々のより大きなパイプラインにどのように統合され、問題に対する量子対応ハイブリッドソリューションを提供するかを示す。
論文 参考訳(メタデータ) (2022-06-08T02:38:32Z) - Quantum Feature Selection [2.5934039615414615]
機械学習では、より少ない機能がモデルの複雑さを減少させる。
本稿では,2次非制約二元最適化問題に基づく特徴選択アルゴリズムを提案する。
反復法や欲求法とは対照的に、我々の直接的なアプローチは高品質な解をもたらす。
論文 参考訳(メタデータ) (2022-03-24T16:22:25Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
形状対応を見つけることは、NP-hard quadratic assignment problem (QAP)として定式化できる。
本稿では,アルファ拡大アルゴリズムに触発されたQAPの反復量子法Q-Matchを提案する。
Q-Match は、実世界の問題にスケールできるような長文対応のサブセットにおいて、反復的に形状マッチング問題に適用できる。
論文 参考訳(メタデータ) (2021-05-06T17:59:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。