Parameter-free Dynamic Graph Embedding for Link Prediction
- URL: http://arxiv.org/abs/2210.08189v1
- Date: Sat, 15 Oct 2022 04:17:09 GMT
- Title: Parameter-free Dynamic Graph Embedding for Link Prediction
- Authors: Jiahao Liu, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Ning Gu
- Abstract summary: FreeGEM is a parameter-free dynamic graph embedding method for link prediction.
We show that FreeGEM can outperform the state-of-the-art methods in accuracy while achieving over 36X improvement in efficiency.
- Score: 18.104685554457394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic interaction graphs have been widely adopted to model the evolution of
user-item interactions over time. There are two crucial factors when modelling
user preferences for link prediction in dynamic interaction graphs: 1)
collaborative relationship among users and 2) user personalized interaction
patterns. Existing methods often implicitly consider these two factors
together, which may lead to noisy user modelling when the two factors diverge.
In addition, they usually require time-consuming parameter learning with
back-propagation, which is prohibitive for real-time user preference modelling.
To this end, this paper proposes FreeGEM, a parameter-free dynamic graph
embedding method for link prediction. Firstly, to take advantage of the
collaborative relationships, we propose an incremental graph embedding engine
to obtain user/item embeddings, which is an Online-Monitor-Offline architecture
consisting of an Online module to approximately embed users/items over time, a
Monitor module to estimate the approximation error in real time and an Offline
module to calibrate the user/item embeddings when the online approximation
errors exceed a threshold. Meanwhile, we integrate attribute information into
the model, which enables FreeGEM to better model users belonging to some under
represented groups. Secondly, we design a personalized dynamic interaction
pattern modeller, which combines dynamic time decay with attention mechanism to
model user short-term interests. Experimental results on two link prediction
tasks show that FreeGEM can outperform the state-of-the-art methods in accuracy
while achieving over 36X improvement in efficiency. All code and datasets can
be found in https://github.com/FudanCISL/FreeGEM.
Related papers
- MixRec: Heterogeneous Graph Collaborative Filtering [21.96510707666373]
We present a graph collaborative filtering model MixRec to disentangling users' multi-behavior interaction patterns.
Our model achieves this by incorporating intent disentanglement and multi-behavior modeling.
We also introduce a novel contrastive learning paradigm that adaptively explores the advantages of self-supervised data augmentation.
arXiv Detail & Related papers (2024-12-18T13:12:36Z) - SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation [15.977789295203976]
We propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation.
The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships.
Our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability.
arXiv Detail & Related papers (2024-05-31T14:53:12Z) - Time-aware Hyperbolic Graph Attention Network for Session-based
Recommendation [58.748215444851226]
Session-based Recommendation (SBR) is to predict users' next interested items based on their previous browsing sessions.
We propose Time-aware Hyperbolic Graph Attention Network (TA-HGAT) to build a session-based recommendation model considering temporal information.
arXiv Detail & Related papers (2023-01-10T04:16:09Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.