論文の概要: Model Criticism for Long-Form Text Generation
- arxiv url: http://arxiv.org/abs/2210.08444v1
- Date: Sun, 16 Oct 2022 04:35:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 15:53:33.900120
- Title: Model Criticism for Long-Form Text Generation
- Title(参考訳): 長文生成のためのモデル批判
- Authors: Yuntian Deng, Volodymyr Kuleshov, Alexander M. Rush
- Abstract要約: 我々は,テキストの高レベル構造を評価するために,潜在空間におけるモデル批判という統計ツールを適用した。
我々は,コヒーレンス,コア,トピックスという,ハイレベルな談話の3つの代表的な側面について実験を行った。
トランスフォーマーベースの言語モデルでは、トピック構造をキャプチャできるが、構造コヒーレンスやモデリングコアスを維持するのが難しくなる。
- 参考スコア(独自算出の注目度): 113.13900836015122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models have demonstrated the ability to generate highly fluent text;
however, it remains unclear whether their output retains coherent high-level
structure (e.g., story progression). Here, we propose to apply a statistical
tool, model criticism in latent space, to evaluate the high-level structure of
the generated text. Model criticism compares the distributions between real and
generated data in a latent space obtained according to an assumptive generative
process. Different generative processes identify specific failure modes of the
underlying model. We perform experiments on three representative aspects of
high-level discourse -- coherence, coreference, and topicality -- and find that
transformer-based language models are able to capture topical structures but
have a harder time maintaining structural coherence or modeling coreference.
- Abstract(参考訳): 言語モデルは高度に流動的なテキストを生成する能力を示したが、その出力が一貫性のある高レベル構造(例えば物語の進行)を維持しているかどうかは不明である。
本稿では,テキストの高レベル構造を評価するために,潜在空間におけるモデル批判という統計ツールを適用することを提案する。
モデル批判は、仮定生成プロセスに従って得られた潜在空間における実データと生成データの分布を比較する。
異なる生成プロセスは、基盤モデルの特定の障害モードを特定する。
コヒーレンス(coherence)、コリファレンス(coreference)、およびトピック性( topicality)の3つの代表的な側面について実験を行い、トランスフォーマティブベースの言語モデルがトピック構造をキャプチャできるが、構造コヒーレンスやモデリングコリファレンスを維持するのが難しいことを発見した。
関連論文リスト
- Michelangelo: Long Context Evaluations Beyond Haystacks via Latent Structure Queries [54.325172923155414]
ミケランジェロ(Michelangelo)は、大規模言語モデルに対する最小限の、合成的で、未学習の長文推論評価である。
この評価は、任意に長いコンテキストに対する評価のための、新しく統一された枠組みによって導出される。
論文 参考訳(メタデータ) (2024-09-19T10:38:01Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - MOCHA: A Multi-Task Training Approach for Coherent Text Generation from
Cognitive Perspective [22.69509556890676]
本稿では,文章の認知理論に基づくコヒーレントテキスト生成のための新しいマルチタスク学習戦略を提案する。
我々は,物語生成,ニュース記事作成,議論生成という3つのオープンエンド世代タスクに対して,我々のモデルを広範囲に評価する。
論文 参考訳(メタデータ) (2022-10-26T11:55:41Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
テキストデータの連続的な構文的・意味的規則性は、構造的バイアスと生成的要因の両方をモデルに提供するのに有効である、と我々は主張する。
本研究では,文型,定義文の表現的・意味的に密接なカテゴリに存在する意味的構造を利用して,不整合表現を学習するための変分オートエンコーダを訓練する。
論文 参考訳(メタデータ) (2022-09-22T14:31:55Z) - Generating Coherent Narratives by Learning Dynamic and Discrete Entity
States with a Contrastive Framework [68.1678127433077]
我々はトランスフォーマーモデルを拡張して,物語生成のためのエンティティ状態更新と文実現を動的に行う。
2つのナラティブデータセットの実験により、我々のモデルは強いベースラインよりも一貫性があり多様なナラティブを生成できることが示された。
論文 参考訳(メタデータ) (2022-08-08T09:02:19Z) - Improving Compositional Generalization with Self-Training for
Data-to-Text Generation [36.973617793800315]
データ・テキスト・タスクにおける現在の生成モデルの合成一般化について検討する。
構成的気象データセットの構造変化をシミュレートすることにより、T5モデルは目に見えない構造に一般化できないことを示す。
擬似応答選択のための細調整BLEURTを用いた自己学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-10-16T04:26:56Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
本稿では,デコード処理における文レベルと談話レベルにおけるプレフィックス文を表現可能な長文生成モデルを提案する。
我々のモデルは最先端のベースラインよりも一貫性のあるテキストを生成することができる。
論文 参考訳(メタデータ) (2021-05-19T07:29:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。