Connection-Based Scheduling for Real-Time Intersection Control
- URL: http://arxiv.org/abs/2210.08445v1
- Date: Sun, 16 Oct 2022 04:37:03 GMT
- Title: Connection-Based Scheduling for Real-Time Intersection Control
- Authors: Hsu-Chieh Hu, Joseph Zhou, Gregory J. Barlow, Stephen F. Smith
- Abstract summary: We introduce a scheduling algorithm for real-time adaptive traffic signal control to reduce traffic congestion.
This algorithm adopts a lane-based model that estimates the arrival time of all vehicles approaching an intersection through different lanes, and then computes a schedule that minimizes the cumulative delay incurred by all approaching vehicles.
- Score: 6.796017024594715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a heuristic scheduling algorithm for real-time adaptive traffic
signal control to reduce traffic congestion. This algorithm adopts a lane-based
model that estimates the arrival time of all vehicles approaching an
intersection through different lanes, and then computes a schedule (i.e., a
signal timing plan) that minimizes the cumulative delay incurred by all
approaching vehicles. State space, pruning checks and an admissible heuristic
for A* search are described and shown to be capable of generating an
intersection schedule in real-time (i.e., every second). Due to the
effectiveness of the heuristics, the proposed approach outperforms a less
expressive Dynamic Programming approach and previous A*-based approaches in
run-time performance, both in simulated test environments and actual field
tests.
Related papers
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Multi-agent Path Finding for Cooperative Autonomous Driving [8.8305853192334]
We devise an optimal and complete algorithm, Order-based Search with Kinematics Arrival Time Scheduling (OBS-KATS), which significantly outperforms existing algorithms.
Our work is directly applicable to many similarly scaled traffic and multi-robot scenarios with directed lanes.
arXiv Detail & Related papers (2024-02-01T04:39:15Z) - Efficient Online Scheduling and Routing for Automated Guided Vehicles In Loop-Based Graphs [0.0]
We propose a loop-based algorithm that solves the online, conflict-free scheduling and routing problem for AGVs with any capacity.
We experimentally show, using theoretical and real instances on a model representing a real manufacturing plant, that this algorithm either outperforms the other algorithms or gets an equally good solution in less computing time.
arXiv Detail & Related papers (2023-10-03T16:41:46Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - A Comparative Study of Algorithms for Intelligent Traffic Signal Control [0.0]
Methods have been explored to effectively optimise traffic signal control to minimise waiting times and queue lengths.
The methods were tested on a simulation of a real-world intersection in Bangalore, India.
arXiv Detail & Related papers (2021-09-02T13:26:49Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Boosted Genetic Algorithm using Machine Learning for traffic control
optimization [4.642759477873937]
This paper presents a novel methodology for optimizing the traffic signal timings in signalized urban intersections.
With the purpose of producing fast and reliable decisions, we combine the fast running Machine Learning (ML) algorithms and the reliable Genetic Algorithms (GA)
We show that the new BGA-ML is much faster than the original GA algorithm and can be successfully applied under non-recurrent incident conditions.
arXiv Detail & Related papers (2021-03-11T00:39:18Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.