Efficient Online Scheduling and Routing for Automated Guided Vehicles In Loop-Based Graphs
- URL: http://arxiv.org/abs/2310.02195v3
- Date: Mon, 11 Nov 2024 16:15:48 GMT
- Title: Efficient Online Scheduling and Routing for Automated Guided Vehicles In Loop-Based Graphs
- Authors: Louis Stubbe, Jens Goemaere, Jan Goedgebeur,
- Abstract summary: We propose a loop-based algorithm that solves the online, conflict-free scheduling and routing problem for AGVs with any capacity.
We experimentally show, using theoretical and real instances on a model representing a real manufacturing plant, that this algorithm either outperforms the other algorithms or gets an equally good solution in less computing time.
- Score: 0.0
- License:
- Abstract: Automated guided vehicles (AGVs) are widely used in various industries, and scheduling and routing them in a conflict-free manner is crucial to their efficient operation. We propose a loop-based algorithm that solves the online, conflict-free scheduling and routing problem for AGVs with any capacity and ordered jobs in loop-based graphs. The proposed algorithm is compared against an exact method, a greedy heuristic and a metaheuristic. We experimentally show, using theoretical and real instances on a model representing a real manufacturing plant, that this algorithm either outperforms the other algorithms or gets an equally good solution in less computing time.
Related papers
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
arXiv Detail & Related papers (2023-06-04T09:18:02Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Connection-Based Scheduling for Real-Time Intersection Control [6.796017024594715]
We introduce a scheduling algorithm for real-time adaptive traffic signal control to reduce traffic congestion.
This algorithm adopts a lane-based model that estimates the arrival time of all vehicles approaching an intersection through different lanes, and then computes a schedule that minimizes the cumulative delay incurred by all approaching vehicles.
arXiv Detail & Related papers (2022-10-16T04:37:03Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - Integrated Decision and Control: Towards Interpretable and Efficient
Driving Intelligence [13.589285628074542]
We present an interpretable and efficient decision and control framework for automated vehicles.
It decomposes the driving task into multi-path planning and optimal tracking that are structured hierarchically.
Results show that our method has better online computing efficiency and driving performance including traffic efficiency and safety.
arXiv Detail & Related papers (2021-03-18T14:43:31Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
Multi-vehicle routing problem with soft time windows (MVRPSTW) is an indispensable constituent in urban logistics systems.
Traditional methods incur the dilemma between computational efficiency and solution quality.
We propose a novel reinforcement learning algorithm called the Multi-Agent Attention Model that can solve routing problem instantly benefit from lengthy offline training.
arXiv Detail & Related papers (2020-02-13T14:26:27Z) - An adaptive data-driven approach to solve real-world vehicle routing
problems in logistics [0.0]
Transportation occupies one-third of the amount in the logistics costs.
This work presents an adaptive data-driven innovative modular approach for solving the real-world Routing Vehicle Problems (VRP) in the field of logistics.
arXiv Detail & Related papers (2020-01-05T17:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.