論文の概要: HQNAS: Auto CNN deployment framework for joint quantization and
architecture search
- arxiv url: http://arxiv.org/abs/2210.08485v1
- Date: Sun, 16 Oct 2022 08:32:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 16:47:06.852838
- Title: HQNAS: Auto CNN deployment framework for joint quantization and
architecture search
- Title(参考訳): HQNAS:共同量子化とアーキテクチャ検索のための自動CNNデプロイメントフレームワーク
- Authors: Hongjiang Chen, Yang Wang, Leibo Liu, Shaojun Wei, Shouyi Yin
- Abstract要約: ハードウェア対応量子化ニューラルネットワーク探索(HQNAS)と呼ばれる新しいニューラルネットワーク設計フレームワークを提案する。
CIFAR10の優れたNNポリシーを見つけるのにわずか4時間しかかからない。
また、Imagenetで同等のモデルを生成するのに10パーセントのGPU時間しかかからない。
- 参考スコア(独自算出の注目度): 30.45926484863791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning applications are being transferred from the cloud to edge with
the rapid development of embedded computing systems. In order to achieve higher
energy efficiency with the limited resource budget, neural networks(NNs) must
be carefully designed in two steps, the architecture design and the
quantization policy choice. Neural Architecture Search(NAS) and Quantization
have been proposed separately when deploying NNs onto embedded devices.
However, taking the two steps individually is time-consuming and leads to a
sub-optimal final deployment. To this end, we propose a novel neural network
design framework called Hardware-aware Quantized Neural Architecture
Search(HQNAS) framework which combines the NAS and Quantization together in a
very efficient manner using weight-sharing and bit-sharing. It takes only 4 GPU
hours to discover an outstanding NN policy on CIFAR10. It also takes only %10
GPU time to generate a comparable model on Imagenet compared to the traditional
NAS method with 1.8x decrease of latency and a negligible accuracy loss of only
0.7%. Besides, our method can be adapted in a lifelong situation where the
neural network needs to evolve occasionally due to changes of local data,
environment and user preference.
- Abstract(参考訳): ディープラーニングアプリケーションは、組み込みコンピューティングシステムの迅速な開発により、クラウドからエッジへ移行している。
限られた資源予算でより高いエネルギー効率を達成するためには、ニューラルネットワーク(NN)をアーキテクチャ設計と量子化ポリシーの選択の2つのステップで慎重に設計する必要がある。
ニューラルネットワーク検索(NAS)と量子化は、組み込みデバイスにNNをデプロイする際に別々に提案されている。
しかし、個別に2つのステップを取るのは時間がかかり、最適化された最終配置につながる。
そこで本研究では,NASと量子化を組み合わせたハードウェア対応量子化ニューラルネットワーク探索(HQNAS)フレームワークを,重み付けとビット共有による極めて効率的な方法で提案する。
CIFAR10の優れたNNポリシーを見つけるのにわずか4時間しかかからない。
また、imagenet上で同等のモデルを生成するのに10gpu時間しかかからず、従来のnas法に比べてレイテンシが1.8倍減少し、精度が0.7%低下している。
さらに,ローカルデータ,環境,ユーザの嗜好の変化により,ニューラルネットワークが時折進化する必要のある,寿命の長い状況に適応することができる。
関連論文リスト
- DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - Lightweight Neural Architecture Search for Temporal Convolutional
Networks at the Edge [21.72253397805102]
この研究は特に、時系列処理のための畳み込みモデルであるTCN(Temporal Convolutional Networks)に焦点を当てている。
我々は,TNの最も特異なアーキテクチャパラメータの最適化を明示的に目標とする最初のNASツールを提案する。
提案したNASは,音声および生体信号を含む4つの実世界のエッジ関連タスクでテストする。
論文 参考訳(メタデータ) (2023-01-24T19:47:40Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Neural Architecture Search for Improving Latency-Accuracy Trade-off in
Split Computing [5.516431145236317]
スプリットコンピューティングは、IoTシステムにディープラーニングをデプロイする際のプライバシとレイテンシの問題に対処する、新たな機械学習推論技術である。
スプリットコンピューティングでは、ニューラルネットワークモデルは、エッジサーバとIoTデバイスをネットワークを介して分離し、協調的に処理される。
本稿ではスプリットコンピューティングのためのニューラルアーキテクチャサーチ(NAS)手法を提案する。
論文 参考訳(メタデータ) (2022-08-30T03:15:43Z) - U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search [50.33956216274694]
ターゲットプラットフォームにおけるリソース利用の最適化は、DNN推論時に高いパフォーマンスを達成するための鍵となる。
本稿では,タスクの正確性や推論遅延を最適化するだけでなく,資源利用のためのハードウェア対応NASフレームワークを提案する。
我々は,従来のハードウェア対応NAS法と比較して,DNN推論の2.8~4倍の高速化を実現している。
論文 参考訳(メタデータ) (2022-03-23T13:44:15Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - FLASH: Fast Neural Architecture Search with Hardware Optimization [7.263481020106725]
ニューラルアーキテクチャサーチ(NAS)は、効率的かつ高性能なディープニューラルネットワーク(DNN)を設計するための有望な手法である
本稿では,実ハードウェアプラットフォーム上でのDNNの精度と性能を協調的に最適化する,非常に高速なNAS手法であるFLASHを提案する。
論文 参考訳(メタデータ) (2021-08-01T23:46:48Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Evolutionary Neural Architecture Search Supporting Approximate
Multipliers [0.5414308305392761]
進化的畳み込みニューラルネットワーク(CNN)のためのカルト的遺伝的プログラミングに基づく多目的NAS法を提案する。
最も適切な近似乗算器は、近似乗算器のライブラリから自動的に選択される。
進化したCNNは、CIFAR-10ベンチマーク問題に類似した複雑さを持つ一般的な人間によるCNNと比較される。
論文 参考訳(メタデータ) (2021-01-28T09:26:03Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - NASCaps: A Framework for Neural Architecture Search to Optimize the
Accuracy and Hardware Efficiency of Convolutional Capsule Networks [10.946374356026679]
我々は,異なるタイプのディープニューラルネットワーク(DNN)のハードウェア対応NASの自動フレームワークであるNASCapsを提案する。
多目的遺伝的アルゴリズム(NSGA-IIアルゴリズム)の展開の有効性について検討する。
我々のフレームワークは、NASフローの特別なカプセル層と動的ルーティングをモデル化し、サポートする最初のフレームワークです。
論文 参考訳(メタデータ) (2020-08-19T14:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。