Efficiently Extracting Multi-Point Correlations of a Floquet Thermalized
System
- URL: http://arxiv.org/abs/2210.08556v1
- Date: Sun, 16 Oct 2022 14:55:49 GMT
- Title: Efficiently Extracting Multi-Point Correlations of a Floquet Thermalized
System
- Authors: Yong-Guang Zheng, Wei-Yong Zhang, Ying-Chao Shen, An Luo, Ying Liu,
Ming-Gen He, Hao-Ran Zhang, Wan Lin, Han-Yi Wang, Zi-Hang Zhu, Ming-Cheng
Chen, Chao-Yang Lu, Supanut Thanasilp, Dimitris G. Angelakis, Zhen-Sheng
Yuan, Jian-Wei Pan
- Abstract summary: Nonequilibrium dynamics of many-body systems is challenging for classical computing.
Our work paves the way towards practical quantum advantage in simulating Floquet dynamics of many-body systems.
- Score: 9.824488596665613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonequilibrium dynamics of many-body systems is challenging for classical
computing, providing opportunities for demonstrating practical quantum
computational advantage with analogue quantum simulators. It is proposed to be
classically intractable to sample driven thermalized many-body states of
Bose-Hubbard systems, and further extract multi-point correlations for
characterizing quantum phases. Here, leveraging dedicated precise manipulations
and number-resolved detection through a quantum gas microscope, we implement
and sample a 32-site driven Hubbard chain in the thermalized phase. Multi-point
correlations of up to 14th-order extracted from experimental samples offer
clear distinctions between the thermalized and many-body-localized phases. In
terms of estimated computational powers, the quantum simulator is comparable to
the fastest supercomputer with currently known best algorithms. Our work paves
the way towards practical quantum advantage in simulating Floquet dynamics of
many-body systems.
Related papers
- Quantum many-body simulation of finite-temperature systems with sampling a series expansion of a quantum imaginary-time evolution [0.0]
Quantum computers are expected to enable us to simulate large systems at finite temperatures.
We propose a method suitable for quantum devices in this early stage to calculate the thermal-equilibrium expectation value of an observable at finite temperatures.
arXiv Detail & Related papers (2024-09-11T07:38:46Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Coherent quantum annealing in a programmable 2000-qubit Ising chain [1.2472275770062884]
We show coherent evolution through a quantum phase transition in the paradigmatic setting of the 1D transverse-field Ising chain.
Results are in quantitative agreement with analytical solutions to the closed-system quantum model.
These experiments demonstrate that large-scale quantum annealers can be operated coherently.
arXiv Detail & Related papers (2022-02-11T19:00:00Z) - Simulating quantum circuits using the multi-scale entanglement
renormalization ansatz [0.0]
We propose a scalable technique for approximate simulations of intermediate-size quantum circuits.
We benchmark the proposed technique for checkerboard-type intermediate-size quantum circuits of 27 qubits with various depths.
arXiv Detail & Related papers (2021-12-28T09:05:01Z) - Benchmarking a novel efficient numerical method for localized 1D
Fermi-Hubbard systems on a quantum simulator [0.0]
We show that a quantum simulator can be used to in-effect solve for the dynamics of a many-body system.
We use a neutral-atom Fermi-Hubbard quantum simulator with $L_textexpsimeq290$ lattice sites to benchmark its performance.
We derive a simple prediction of the behaviour of interacting Bloch oscillations for spin-imbalanced Fermi-Hubbard systems.
arXiv Detail & Related papers (2021-05-13T16:03:11Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Continuous-variable assisted thermal quantum simulation [1.6530012863603747]
We present an experimentally feasible quantum algorithm assisted with continuous-variable simulating for quantum systems at finite temperatures.
It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits.
We propose a protocol implementable with superconducting or trapped ion quantum computers.
arXiv Detail & Related papers (2020-05-31T09:04:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.