Simulating quantum circuits using the multi-scale entanglement
renormalization ansatz
- URL: http://arxiv.org/abs/2112.14046v1
- Date: Tue, 28 Dec 2021 09:05:01 GMT
- Title: Simulating quantum circuits using the multi-scale entanglement
renormalization ansatz
- Authors: I.A. Luchnikov, A.V. Berezutskii, A.K. Fedorov
- Abstract summary: We propose a scalable technique for approximate simulations of intermediate-size quantum circuits.
We benchmark the proposed technique for checkerboard-type intermediate-size quantum circuits of 27 qubits with various depths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the limiting capabilities of classical methods in simulating
complex quantum systems is of paramount importance for quantum technologies.
Although many advanced approaches have been proposed and recently used to
challenge quantum advantage experiments, novel efficient methods for
approximate simulation of complex quantum systems are highly demanded. Here we
propose a scalable technique for approximate simulations of intermediate-size
quantum circuits on the basis of multi-scale entanglement renormalization
ansatz (MERA). MERA is a tensor network, whose geometry together with
orthogonality constraints imposed on its "elementary" tensors allows
approximating many-body quantum states lying beyond the area-law scaling of the
entanglement entropy. We benchmark the proposed technique for checkerboard-type
intermediate-size quantum circuits of 27 qubits with various depths. Our
approach paves a way to explore new efficient simulation techniques for quantum
many-body systems.
Related papers
- Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Lower bound for simulation cost of open quantum systems: Lipschitz continuity approach [5.193557673127421]
We present a general framework to calculate the lower bound for simulating a broad class of quantum Markov semigroups.
Our framework can be applied to both unital and non-unital quantum dynamics.
arXiv Detail & Related papers (2024-07-22T03:57:41Z) - Multi-reference Quantum Davidson Algorithm for Quantum Dynamics [3.3869539907606603]
Quantum Krylov Subspace (QKS) methods have been developed, enhancing the ability to perform accelerated simulations on noisy intermediate-scale quantum computers.
We introduce and evaluate two QKS methods derived from the QDavidson algorithm, a novel approach for determining the ground and excited states of many-body systems.
arXiv Detail & Related papers (2024-06-12T22:30:52Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.