論文の概要: Towards Dynamic Fault Tolerance for Hardware-Implemented Artificial
Neural Networks: A Deep Learning Approach
- arxiv url: http://arxiv.org/abs/2210.08601v1
- Date: Sun, 16 Oct 2022 18:09:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 21:41:10.675241
- Title: Towards Dynamic Fault Tolerance for Hardware-Implemented Artificial
Neural Networks: A Deep Learning Approach
- Title(参考訳): ハードウェア実装型ニューラルネットワークの動的フォールトトレランスに向けて:ディープラーニングアプローチ
- Authors: Daniel Gregorek, Nils H\"ulsmeier, Steffen Paul
- Abstract要約: 本研究では,ニューラルネットワークの動的障害影響を軽減するためのディープラーニング手法について検討する。
理論的なユースケースとして、ディープオートエンコーダによる画像圧縮を考える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The functionality of electronic circuits can be seriously impaired by the
occurrence of dynamic hardware faults. Particularly, for digital ultra
low-power systems, a reduced safety margin can increase the probability of
dynamic failures. This work investigates a deep learning approach to mitigate
dynamic fault impact for artificial neural networks. As a theoretic use case,
image compression by means of a deep autoencoder is considered. The evaluation
shows a linear dependency of the test loss to the fault injection rate during
testing. If the number of training epochs is sufficiently large, our approach
shows more than 2% reduction of the test loss compared to a baseline network
without the need of additional hardware. At the absence of faults during
testing, our approach also decreases the test loss compared to reference
networks.
- Abstract(参考訳): 電子回路の機能は、動的ハードウェア障害の発生によって深刻な障害を負う可能性がある。
特に、デジタル超低消費電力システムでは、安全マージンの低下は動的故障の確率を増大させる。
本研究では,ニューラルネットワークの動的障害影響を軽減するための深層学習手法について検討する。
理論的なユースケースとして、ディープオートエンコーダによる画像圧縮を考える。
評価は, 試験中の故障発生率に対する試験損失の線形依存性を示す。
トレーニング期間が十分に大きい場合は、追加のハードウェアを必要とせず、ベースラインネットワークと比較してテスト損失が2%以上減少することを示す。
テスト中に障害がない場合、このアプローチは参照ネットワークと比較してテスト損失を減少させる。
関連論文リスト
- Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
本稿では,組み込みディープニューラルネットワーク(DNN)のロバスト性評価について述べる。
本研究は,様々なエンコーダデコーダモデルの層間およびビット間感度をソフトエラーに精査することにより,セグメント化DNNのSEUに対する脆弱性を徹底的に調査する。
本稿では,資源制約によるデプロイメントに適したメモリや計算コストを伴わない,実用的な軽量なエラー軽減手法を提案する。
論文 参考訳(メタデータ) (2024-12-04T18:28:38Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes [50.00272243518593]
ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は問題の多いままである。
我々は低電圧状態におけるエネルギー精度のトレードオフを処理する新しいアドオンモジュールであるNeuralFuseを開発した。
1%のビットエラー率で、NeuralFuseはアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができる。
論文 参考訳(メタデータ) (2023-06-29T11:38:22Z) - Dynamics-Aware Loss for Learning with Label Noise [73.75129479936302]
ディープニューラルネットワーク(DNN)にラベルノイズが深刻な脅威をもたらす
本稿では,この問題を解決するためにDAL(Dynamics-Aware Los)を提案する。
詳細な理論的解析と広範な実験結果の両方が,本手法の優位性を示している。
論文 参考訳(メタデータ) (2023-03-21T03:05:21Z) - ISimDL: Importance Sampling-Driven Acceleration of Fault Injection
Simulations for Evaluating the Robustness of Deep Learning [10.757663798809144]
我々は,重要なサンプリングに基づく障害シナリオを生成するために,ニューロンの感度を利用する新しい手法であるISimDLを提案する。
実験の結果, ランダムな一様サンプリングよりも臨界断層を選択する場合, 重要サンプリングは最大15倍の精度で, 100個未満の故障でその精度に達することがわかった。
論文 参考訳(メタデータ) (2023-03-14T16:15:28Z) - Improving Reliability of Spiking Neural Networks through Fault Aware
Threshold Voltage Optimization [0.0]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックなハードウェアに自らを貸すことで、コンピュータビジョンを突破した。
Systolic-array SNNアクセラレータ(systolicSNN)が最近提案されているが、信頼性は依然として大きな懸念点である。
本稿では、リトレーニングにおける新しい故障軽減手法、すなわち、故障認識しきい値電圧の最適化について述べる(FalVolt)。
論文 参考訳(メタデータ) (2023-01-12T19:30:21Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
本稿では,ニューラルネットワークの変動と雑音下での堅牢性を高める枠組みを提案する。
ニューラルネットワークの予測精度は、変動とノイズの下で1.69%以下から回復可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T19:13:33Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Dynamic Hard Pruning of Neural Networks at the Edge of the Internet [11.605253906375424]
動的ハードプルーニング(DynHP)技術は、トレーニング中にネットワークを段階的にプルーニングする。
DynHPは、最終ニューラルネットワークの調整可能なサイズ削減と、トレーニング中のNNメモリ占有率の削減を可能にする。
凍結メモリは、ハードプルーニング戦略による精度劣化を相殺するために、エンファンダイナミックバッチサイズアプローチによって再利用される。
論文 参考訳(メタデータ) (2020-11-17T10:23:28Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。