D2SLAM: Semantic visual SLAM based on the influence of Depth for Dynamic
environments
- URL: http://arxiv.org/abs/2210.08647v1
- Date: Sun, 16 Oct 2022 22:13:59 GMT
- Title: D2SLAM: Semantic visual SLAM based on the influence of Depth for Dynamic
environments
- Authors: Ayman Beghdadi and Malik Mallem and Lotfi Beji
- Abstract summary: We propose a novel approach to determine dynamic elements that lack generalization and scene awareness.
We use scene depth information that refines the accuracy of estimates from geometric and semantic modules.
The obtained results demonstrate the efficacy of the proposed method in providing accurate localization and mapping in dynamic environments.
- Score: 0.483420384410068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Taking into account the dynamics of the scene is the most effective solution
to obtain an accurate perception of unknown environments within the framework
of a real autonomous robotic application. Many works have attempted to address
the non-rigid scene assumption by taking advantage of deep learning
advancements. Most new methods combine geometric and semantic approaches to
determine dynamic elements that lack generalization and scene awareness. We
propose a novel approach that overcomes the limitations of these methods by
using scene depth information that refines the accuracy of estimates from
geometric and semantic modules. In addition, the depth information is used to
determine an area of influence of dynamic objects through our Objects
Interaction module that estimates the state of both non-matched keypoints and
out of segmented region keypoints. The obtained results demonstrate the
efficacy of the proposed method in providing accurate localization and mapping
in dynamic environments.
Related papers
- D$^3$epth: Self-Supervised Depth Estimation with Dynamic Mask in Dynamic Scenes [23.731667977542454]
D$3$epth is a novel method for self-supervised depth estimation in dynamic scenes.
It tackles the challenge of dynamic objects from two key perspectives.
It consistently outperforms existing self-supervised monocular depth estimation baselines.
arXiv Detail & Related papers (2024-11-07T16:07:00Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Mining Supervision for Dynamic Regions in Self-Supervised Monocular Depth Estimation [23.93080319283679]
Existing methods jointly estimate pixel-wise depth and motion, relying mainly on an image reconstruction loss.
Dynamic regions1 remain a critical challenge for these methods due to the inherent ambiguity in depth and motion estimation.
This paper proposes a self-supervised training framework exploiting pseudo depth labels for dynamic regions from training data.
arXiv Detail & Related papers (2024-04-23T10:51:15Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Prompt-Driven Dynamic Object-Centric Learning for Single Domain
Generalization [61.64304227831361]
Single-domain generalization aims to learn a model from single source domain data to achieve generalized performance on other unseen target domains.
We propose a dynamic object-centric perception network based on prompt learning, aiming to adapt to the variations in image complexity.
arXiv Detail & Related papers (2024-02-28T16:16:51Z) - NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments [9.706447888754614]
We present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments.
We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas.
We also introduce a selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects.
arXiv Detail & Related papers (2024-01-02T12:35:03Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
We propose a novel object-centric reinforcement learning algorithm combining actor-critic and model-based approaches.
We use a transformer encoder to extract object representations and graph neural networks to approximate the dynamics of an environment.
Our algorithm performs better in a visually complex 3D robotic environment and a 2D environment with compositional structure than the state-of-the-art model-free actor-critic algorithm.
arXiv Detail & Related papers (2023-10-26T06:05:12Z) - Object Detection with Deep Reinforcement Learning [0.0]
We implement a novel active object localization algorithm based on deep reinforcement learning.
We compare two different action settings for this MDP: a hierarchical method and a dynamic method.
arXiv Detail & Related papers (2022-08-09T02:34:53Z) - Self-Supervised Joint Learning Framework of Depth Estimation via
Implicit Cues [24.743099160992937]
We propose a novel self-supervised joint learning framework for depth estimation.
The proposed framework outperforms the state-of-the-art(SOTA) on KITTI and Make3D datasets.
arXiv Detail & Related papers (2020-06-17T13:56:59Z) - Neural Topological SLAM for Visual Navigation [112.73876869904]
We design topological representations for space that leverage semantics and afford approximate geometric reasoning.
We describe supervised learning-based algorithms that can build, maintain and use such representations under noisy actuation.
arXiv Detail & Related papers (2020-05-25T17:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.