ADD-SLAM: Adaptive Dynamic Dense SLAM with Gaussian Splatting
- URL: http://arxiv.org/abs/2505.19420v1
- Date: Mon, 26 May 2025 02:17:17 GMT
- Title: ADD-SLAM: Adaptive Dynamic Dense SLAM with Gaussian Splatting
- Authors: Wenhua Wu, Chenpeng Su, Siting Zhu, Tianchen Deng, Zhe Liu, Hesheng Wang,
- Abstract summary: ADD-SLAM: an Adaptive Dynamic Dense SLAM framework based on Gaussian splitting.<n>We design an adaptive dynamic identification mechanism grounded in scene consistency analysis.<n>Ours requires no predefined semantic category priors and adaptively discovers scene dynamics.
- Score: 12.846353008321394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Neural Radiance Fields (NeRF) and 3D Gaussian-based Simultaneous Localization and Mapping (SLAM) methods have demonstrated exceptional localization precision and remarkable dense mapping performance. However, dynamic objects introduce critical challenges by disrupting scene consistency, leading to tracking drift and mapping artifacts. Existing methods that employ semantic segmentation or object detection for dynamic identification and filtering typically rely on predefined categorical priors, while discarding dynamic scene information crucial for robotic applications such as dynamic obstacle avoidance and environmental interaction. To overcome these challenges, we propose ADD-SLAM: an Adaptive Dynamic Dense SLAM framework based on Gaussian splitting. We design an adaptive dynamic identification mechanism grounded in scene consistency analysis, comparing geometric and textural discrepancies between real-time observations and historical maps. Ours requires no predefined semantic category priors and adaptively discovers scene dynamics. Precise dynamic object recognition effectively mitigates interference from moving targets during localization. Furthermore, we propose a dynamic-static separation mapping strategy that constructs a temporal Gaussian model to achieve online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate our method's flexible and accurate dynamic segmentation capabilities, along with state-of-the-art performance in both localization and mapping.
Related papers
- Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
Prior methods often simplify the problem to low-speed or 2D settings, limiting their applicability to real-world 3D tasks.<n>To mitigate data scarcity, we introduce a novel simulation framework and benchmark grounded in reduced-order dynamics.<n>We propose Dynamics Informed Diffusion Policy (DIDP), a framework that integrates imitation pretraining with physics-informed test-time adaptation.
arXiv Detail & Related papers (2025-05-23T03:28:25Z) - WildGS-SLAM: Monocular Gaussian Splatting SLAM in Dynamic Environments [48.51530726697405]
We present WildGS-SLAM, a robust and efficient monocular RGB SLAM system designed to handle dynamic environments.<n>We introduce an uncertainty map, predicted by a shallow multi-layer perceptron and DINOv2 features, to guide dynamic object removal during both tracking and mapping.<n>Results showcase WildGS-SLAM's superior performance in dynamic environments compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-04-04T19:19:40Z) - UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
UrbanGS uses 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene.<n>For potentially dynamic objects, we aggregate temporal information using learnable time embeddings.<n>Our approach outperforms state-of-the-art methods in reconstruction quality and efficiency.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.<n>We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.<n>We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
Simultaneous localization and mapping (SLAM) with implicit neural representations has received extensive attention.
We propose a novel SLAM framework for dynamic environments.
arXiv Detail & Related papers (2024-07-18T09:35:48Z) - DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM [5.267859554944985]
We introduce DDN-SLAM, the first real-time dense dynamic neural implicit SLAM system integrating semantic features.
Compared to existing neural implicit SLAM systems, the tracking results on dynamic datasets indicate an average 90% improvement in Average Trajectory Error (ATE) accuracy.
arXiv Detail & Related papers (2024-01-03T05:42:17Z) - NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments [9.706447888754614]
We present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments.
We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas.
We also introduce a selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects.
arXiv Detail & Related papers (2024-01-02T12:35:03Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
High dynamic range imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output.
Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion.
We propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules.
arXiv Detail & Related papers (2023-05-29T15:03:23Z) - D2SLAM: Semantic visual SLAM based on the influence of Depth for Dynamic
environments [0.483420384410068]
We propose a novel approach to determine dynamic elements that lack generalization and scene awareness.
We use scene depth information that refines the accuracy of estimates from geometric and semantic modules.
The obtained results demonstrate the efficacy of the proposed method in providing accurate localization and mapping in dynamic environments.
arXiv Detail & Related papers (2022-10-16T22:13:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.