論文の概要: PTDE: Personalized Training with Distilled Execution for Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2210.08872v2
- Date: Sat, 20 Apr 2024 02:25:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 01:41:46.231449
- Title: PTDE: Personalized Training with Distilled Execution for Multi-Agent Reinforcement Learning
- Title(参考訳): PTDE:マルチエージェント強化学習のための拡張実行による個人化訓練
- Authors: Yiqun Chen, Hangyu Mao, Jiaxin Mao, Shiguang Wu, Tianle Zhang, Bin Zhang, Wei Yang, Hongxing Chang,
- Abstract要約: 個別の$Q$関数や個々のアクターを直接強化するために、グローバル情報を活用することを検討する。
我々は,エージェント個人化されたグローバル情報をエージェントのローカル情報に蒸留するPTDE(Personalized Training with Distilled Execution)という新しいパラダイムを導入する。
PTDEは最先端のアルゴリズムとシームレスに統合することができ、様々なベンチマークで注目すべきパフォーマンス向上につながっている。
- 参考スコア(独自算出の注目度): 19.34602543021122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Centralized Training with Decentralized Execution (CTDE) has emerged as a widely adopted paradigm in multi-agent reinforcement learning, emphasizing the utilization of global information for learning an enhanced joint $Q$-function or centralized critic. In contrast, our investigation delves into harnessing global information to directly enhance individual $Q$-functions or individual actors. Notably, we discover that applying identical global information universally across all agents proves insufficient for optimal performance. Consequently, we advocate for the customization of global information tailored to each agent, creating agent-personalized global information to bolster overall performance. Furthermore, we introduce a novel paradigm named Personalized Training with Distilled Execution (PTDE), wherein agent-personalized global information is distilled into the agent's local information. This distilled information is then utilized during decentralized execution, resulting in minimal performance degradation. PTDE can be seamlessly integrated with state-of-the-art algorithms, leading to notable performance enhancements across diverse benchmarks, including the SMAC benchmark, Google Research Football (GRF) benchmark, and Learning to Rank (LTR) task.
- Abstract(参考訳): 分散実行による集中訓練(CTDE)は、多エージェント強化学習において広く採用されているパラダイムとして現れ、Q$-function(英語版)や集中的批判(英語版)を学習するためのグローバル情報の利用を強調している。
対照的に、調査ではグローバルな情報を活用して、個別の$Q$関数や個々のアクターを直接強化しています。
特に,全てのエージェントに対して同一のグローバル情報を普遍的に適用することは,最適な性能を示すには不十分であることが判明した。
その結果、各エージェントに合わせたグローバル情報のカスタマイズを提唱し、総合的なパフォーマンスを高めるためにエージェント個人化されたグローバル情報を作成する。
さらに,エージェント個人化されたグローバル情報をエージェントのローカル情報に蒸留するPTDE(Personalized Training with Distilled Execution)という新しいパラダイムを導入する。
この蒸留された情報は、分散実行中に利用され、性能劣化を最小限に抑える。
PTDEは最先端のアルゴリズムとシームレスに統合できるため、SMACベンチマーク、Google Research Football(GRF)ベンチマーク、Learning to Rank(LTR)タスクなど、さまざまなベンチマークで注目すべきパフォーマンス向上を実現している。
関連論文リスト
- FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation [7.052566906745796]
FedLPAは、フェデレートラーニングのための階層的な後続アグリゲーション手法である。
以上の結果から,FedLPAは最先端の手法よりも学習性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:51:27Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - Is Centralized Training with Decentralized Execution Framework
Centralized Enough for MARL? [27.037348104661497]
分散実行によるトレーニングは、協調的マルチエージェント強化学習のための一般的なフレームワークである。
マルチエージェント強化学習のためのCADP(Advising and Decentralized Pruning)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-27T03:15:24Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF(ディープ・マルチモーダル・フュージョン)は、個人再識別タスクの一般的なシナリオのためのディープ・マルチモーダル・フュージョン・ネットワークである。
事前学習段階における特徴表現学習を支援するために、リッチな意味知識が導入される。
実世界の分散アライメントのための事前訓練されたモデルを微調整するために、現実的なデータセットが採用されている。
論文 参考訳(メタデータ) (2022-11-02T07:42:48Z) - CTDS: Centralized Teacher with Decentralized Student for Multi-Agent
Reinforcement Learning [114.69155066932046]
この作品は小説を提案している。
教師モデルと学生モデルからなる分散学生(C TDS)フレームワーク。
具体的には、教師モデルは、グローバルな観察で条件付けられた個別のQ値を学ぶことで、チームの報酬を割り当てる。
学生モデルは、部分的な観察を利用して、教師モデルによって推定されるQ値を近似する。
論文 参考訳(メタデータ) (2022-03-16T06:03:14Z) - AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via
Multi-Agent Multi-Task Reinforcement Learning [22.890835786710316]
本稿は,小隊の無線リソース管理を意識した情報年齢(AoI)の問題について検討する。
複数の自律型プラトンは、C-V2X通信技術を利用して、協力的認識メッセージ(CAM)をフォロワーに広める。
我々は,マルチエージェント強化学習(marl)に基づく分散リソース割当フレームワークを活用し,各小隊リーダ(pl)がエージェントとして行動し,環境と相互作用して最適方針を学ぶ。
論文 参考訳(メタデータ) (2021-05-10T08:39:56Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z) - Distributed Resource Scheduling for Large-Scale MEC Systems: A
Multi-Agent Ensemble Deep Reinforcement Learning with Imitation Acceleration [44.40722828581203]
本稿では,各MECサーバにデプロイされた各エージェントのグローバル情報と分散意思決定に依存する集中型トレーニングを含む分散インテリジェントリソーススケジューリング(DIRS)フレームワークを提案する。
まず,マルチエージェント・アンサンブルを用いた分散強化学習(DRL)アーキテクチャを導入し,各エージェントの全体的なニューラルネットワーク構造を簡素化する。
第2に,提案したDIRSフレームワークの探索能力を高めるために,新しいL'evyフライトサーチにより,最適に近い状態対が得られた。
論文 参考訳(メタデータ) (2020-05-21T20:04:40Z) - Privileged Information Dropout in Reinforcement Learning [56.82218103971113]
トレーニング中に特権情報を使用することで、機械学習システムのサンプル効率とパフォーマンスを向上させることができる。
本研究では,価値に基づく強化学習アルゴリズムとポリシーに基づく強化学習アルゴリズムに等しく適用可能なプライヴィレグ情報ドロップアウト(pid)について検討する。
論文 参考訳(メタデータ) (2020-05-19T05:32:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。