論文の概要: Face Pasting Attack
- arxiv url: http://arxiv.org/abs/2210.09153v1
- Date: Mon, 17 Oct 2022 14:59:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 17:32:48.033814
- Title: Face Pasting Attack
- Title(参考訳): Face Pasting Attack(英語)
- Authors: Niklas Bunzel, Lukas Graner
- Abstract要約: Cujo AIとAdversa AIはMLSecの顔認識チャレンジを主催した。
目標は、ターゲットの攻撃でブラックボックスの顔認識モデルを攻撃することであった。
当社のアプローチでは、攻撃1回当たりのクエリが最終スコアで約200、攻撃が成功した場合のクエリが最低7.7でした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cujo AI and Adversa AI hosted the MLSec face recognition challenge. The goal
was to attack a black box face recognition model with targeted attacks. The
model returned the confidence of the target class and a stealthiness score. For
an attack to be considered successful the target class has to have the highest
confidence among all classes and the stealthiness has to be at least 0.5. In
our approach we paste the face of a target into a source image. By utilizing
position, scaling, rotation and transparency attributes we reached 3rd place.
Our approach took approximately 200 queries per attack for the final highest
score and about ~7.7 queries minimum for a successful attack. The code is
available at https://github.com/bunni90/ FacePastingAttack
- Abstract(参考訳): Cujo AIとAdversa AIはMLSecの顔認識チャレンジを主催した。
目標は、攻撃対象のブラックボックス顔認識モデルを攻撃することであった。
モデルは、目標クラスの自信とステルス性スコアを返した。
攻撃が成功するためには、ターゲットクラスはすべてのクラスの中で最も信頼され、ステルスネスは少なくとも0.5である必要がある。
私たちのアプローチでは、ターゲットの顔をソースイメージに貼り付けます。
位置、スケーリング、ローテーション、透明性属性を活用することで、3位に到達しました。
当社のアプローチでは,攻撃1回当たりのクエリ数が最終スコアで約200,攻撃成功で最低で約7.7であった。
コードはhttps://github.com/bunni90/FacePastingAttackで入手できる。
関連論文リスト
- Gradient Masking All-at-Once: Ensemble Everything Everywhere Is Not Robust [65.95797963483729]
あらゆるものをアンサンブルすることは、敵の例に対する防御である。
この防御は敵の攻撃に対して堅牢ではないことを示す。
次に、標準的なアダプティブアタック技術を用いて、防御の堅牢な精度を低下させる。
論文 参考訳(メタデータ) (2024-11-22T10:17:32Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
数発の学習がバックドアアタックに対して脆弱であることは明らかです。
本手法は,FSLタスクにおける攻撃成功率(ASR)を,異なる数発の学習パラダイムで示す。
この研究は、数発の学習がまだバックドア攻撃に悩まされており、そのセキュリティに注意を払う必要があることを明らかにしている。
論文 参考訳(メタデータ) (2023-12-31T06:43:36Z) - PubDef: Defending Against Transfer Attacks From Public Models [6.0012551318569285]
本稿では,公用サロゲートモデルによる転送攻撃を敵が頼りにする,新たな実用的脅威モデルを提案する。
本研究では,この環境での移動攻撃を評価し,ゲーム理論の観点から専門的な防御手法を提案する。
この脅威モデルの下では、我々の防衛であるPubDefは、最先端のホワイトボックス対敵訓練を、通常の精度でほとんど損なわない大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-10-26T17:58:08Z) - Invisible Backdoor Attack with Dynamic Triggers against Person
Re-identification [71.80885227961015]
個人再識別(ReID)は、広範囲の現実世界のアプリケーションで急速に進展しているが、敵攻撃の重大なリスクも生じている。
動的トリガー・インビジブル・バックドア・アタック(DT-IBA)と呼ばれる,ReIDに対する新たなバックドア・アタックを提案する。
本研究は,提案したベンチマークデータセットに対する攻撃の有効性と盗聴性を広範囲に検証し,攻撃に対する防御手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-11-20T10:08:28Z) - ReFace: Real-time Adversarial Attacks on Face Recognition Systems [17.761026041449977]
本稿では,ATN(Adversarial Transformation Networks)に基づく顔認識モデルに対するリアルタイムかつ高変換可能な攻撃であるReFaceを提案する。
ATNsモデルによるフィードフォワードニューラルネットワークの逆例生成
純U-Net ATNのホワイトボックス攻撃成功率は、大規模顔認識データセットのPGDのような勾配に基づく攻撃にほぼ及ばないことがわかった。
論文 参考訳(メタデータ) (2022-06-09T22:25:34Z) - QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval [56.51916317628536]
画像検索に対するクエリベースの攻撃について検討し,ブラックボックス設定下での対比例に対する堅牢性を評価する。
新たな関連性に基づく損失は、攻撃前後のトップk検索結果のセット類似度を測定して攻撃効果を定量化するように設計されている。
提案手法は,ブラックボックス設定による画像検索システムに対するクエリ数が少なく,高い攻撃成功率を達成できることを示す実験である。
論文 参考訳(メタデータ) (2021-03-04T10:18:43Z) - Reverse Engineering Imperceptible Backdoor Attacks on Deep Neural
Networks for Detection and Training Set Cleansing [22.22337220509128]
バックドアデータ中毒は、ディープニューラルネットワークイメージ分類器に対する敵攻撃の新たな形態である。
本稿では,非受容的なバックドアパターンを用いたバックドア攻撃の防御において,ブレークスルーを行う。
1)トレーニングセットが毒であるかどうかを検知し,2)ターゲットクラスとトレーニングイメージをバックドアパターンを埋め込んだ状態で識別し,3)攻撃者が使用するバックドアパターンの推定をリバースエンジニアリングする。
論文 参考訳(メタデータ) (2020-10-15T03:12:24Z) - RayS: A Ray Searching Method for Hard-label Adversarial Attack [99.72117609513589]
我々は、レイサーチ攻撃(RayS)を提案し、これはハードラベル攻撃の有効性と効率を大幅に改善する。
モデルの正当性チェックとしても使用できる。
論文 参考訳(メタデータ) (2020-06-23T07:01:50Z) - Tricking Adversarial Attacks To Fail [0.05076419064097732]
私たちのホワイトボックスの防御トリックは、指定されたターゲットクラスをターゲットにした攻撃になるための未然の攻撃です。
私たちのターゲットトレーニングディフェンスは、未目標の勾配ベースの敵攻撃のコアでの最小化をトリックします。
論文 参考訳(メタデータ) (2020-06-08T12:22:07Z) - BadNL: Backdoor Attacks against NLP Models with Semantic-preserving
Improvements [33.309299864983295]
我々は,新たな攻撃方法を含む一般的なNLPバックドア攻撃フレームワークであるBadNLを提案する。
我々の攻撃は、原モデルの実用性に無視できる効果で、ほぼ完璧な攻撃成功率を達成する。
論文 参考訳(メタデータ) (2020-06-01T16:17:14Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。