The Power of One Clean Qubit in Supervised Machine Learning
- URL: http://arxiv.org/abs/2210.09275v4
- Date: Tue, 7 Nov 2023 18:33:05 GMT
- Title: The Power of One Clean Qubit in Supervised Machine Learning
- Authors: Mahsa Karimi, Ali Javadi-Abhari, Christoph Simon, Roohollah Ghobadi
- Abstract summary: We show that the DQC1 model can be leveraged to develop an efficient method for estimating complex kernel functions.
The paper presents an implementation of a binary classification problem on IBM hardware using the DQC1 model and analyzes the impact of quantum coherence and hardware noise.
- Score: 1.218077316816717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the potential benefits of quantum coherence and quantum
discord in the non-universal quantum computing model called deterministic
quantum computing with one qubit (DQC1) in supervised machine learning. We show
that the DQC1 model can be leveraged to develop an efficient method for
estimating complex kernel functions. We demonstrate a simple relationship
between coherence consumption and the kernel function, a crucial element in
machine learning. The paper presents an implementation of a binary
classification problem on IBM hardware using the DQC1 model and analyzes the
impact of quantum coherence and hardware noise. The advantage of our proposal
lies in its utilization of quantum discord, which is more resilient to noise
than entanglement.
Related papers
- Expressivity of deterministic quantum computation with one qubit [3.399289369740637]
We introduce parameterized DQC1 as a quantum machine learning model.
We show that DQC1 is as powerful as quantum neural networks based on universal computation.
arXiv Detail & Related papers (2024-11-05T02:46:27Z) - Quantum Machine Learning with Application to Progressive Supranuclear Palsy Network Classification [0.0]
We present a quantum machine learning model for the diagnosis of Progressive Supranuclear Palsy (PSP) disorder.
The results suggest that quantum machine learning has led to noticeable advancement and outperforms classical frameworks.
In particular, we have demonstrated the successful application of the present model on both a quantum simulator and real chips of the IBM quantum platform.
arXiv Detail & Related papers (2024-07-06T14:16:31Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms.
QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain.
Our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.
arXiv Detail & Related papers (2024-03-05T11:29:05Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
arXiv Detail & Related papers (2023-05-01T07:01:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Improving Quantum Classifier Performance in NISQ Computers by Voting
Strategy from Ensemble Learning [9.257859576573942]
Large error rates occur in quantum algorithms due to quantum decoherence and imprecision of quantum gates.
In this study, we suggest that ensemble quantum classifiers be optimized with plurality voting.
arXiv Detail & Related papers (2022-10-04T14:59:58Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.