Expressivity of deterministic quantum computation with one qubit
- URL: http://arxiv.org/abs/2411.02751v1
- Date: Tue, 05 Nov 2024 02:46:27 GMT
- Title: Expressivity of deterministic quantum computation with one qubit
- Authors: Yujin Kim, Daniel K. Park,
- Abstract summary: We introduce parameterized DQC1 as a quantum machine learning model.
We show that DQC1 is as powerful as quantum neural networks based on universal computation.
- Score: 3.399289369740637
- License:
- Abstract: Deterministic quantum computation with one qubit (DQC1) is of significant theoretical and practical interest due to its computational advantages in certain problems, despite its subuniversality with limited quantum resources. In this work, we introduce parameterized DQC1 as a quantum machine learning model. We demonstrate that the gradient of the measurement outcome of a DQC1 circuit with respect to its gate parameters can be computed directly using the DQC1 protocol. This allows for gradient-based optimization of DQC1 circuits, positioning DQC1 as the sole quantum protocol for both training and inference. We then analyze the expressivity of the parameterized DQC1 circuits, characterizing the set of learnable functions, and show that DQC1-based machine learning (ML) is as powerful as quantum neural networks based on universal computation. Our findings highlight the potential of DQC1 as a practical and versatile platform for ML, capable of rivaling more complex quantum computing models while utilizing simpler quantum resources.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits [16.460585387762478]
ized quantum circuits (PQCs) have emerged as a promising approach for quantum neural networks.
This paper investigates the expressivity of PQCs for approximating general function classes.
We establish the first non-asymptotic approximation error bounds for these functions in terms of the number of qubits, quantum circuit depth, and number of trainable parameters.
arXiv Detail & Related papers (2023-10-11T14:29:11Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Realization of quantum signal processing on a noisy quantum computer [0.4593579891394288]
We propose a strategy to run an entire QSP protocol on noisy quantum hardware by carefully reducing overhead costs at each step.
We test the protocol by running the algorithm on the Quantinuum H1-1 trapped-ion quantum computer powered by Honeywell.
Our results are the first step in the experimental realization of QSP-based quantum algorithms.
arXiv Detail & Related papers (2023-03-09T19:00:17Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - The Power of One Clean Qubit in Supervised Machine Learning [1.218077316816717]
We show that the DQC1 model can be leveraged to develop an efficient method for estimating complex kernel functions.
The paper presents an implementation of a binary classification problem on IBM hardware using the DQC1 model and analyzes the impact of quantum coherence and hardware noise.
arXiv Detail & Related papers (2022-10-17T17:27:02Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
arXiv Detail & Related papers (2022-09-05T13:22:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.