FIMP: Foundation Model-Informed Message Passing for Graph Neural Networks
- URL: http://arxiv.org/abs/2210.09475v5
- Date: Mon, 1 Jul 2024 22:54:01 GMT
- Title: FIMP: Foundation Model-Informed Message Passing for Graph Neural Networks
- Authors: Syed Asad Rizvi, Nazreen Pallikkavaliyaveetil, David Zhang, Zhuoyang Lyu, Nhi Nguyen, Haoran Lyu, Benjamin Christensen, Josue Ortega Caro, Antonio H. O. Fonseca, Emanuele Zappala, Maryam Bagherian, Christopher Averill, Chadi G. Abdallah, Amin Karbasi, Rex Ying, Maria Brbic, Rahul Madhav Dhodapkar, David van Dijk,
- Abstract summary: Foundation-Informed Message Passing (FIMP) is a Graph Neural Network (GNN) message-passing framework.
We show that the self-attention layers of foundation models can effectively be repurposed on graphs to perform cross-node attention-based message-passing.
- Score: 36.648927429221466
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models have achieved remarkable success across many domains, relying on pretraining over vast amounts of data. Graph-structured data often lacks the same scale as unstructured data, making the development of graph foundation models challenging. In this work, we propose Foundation-Informed Message Passing (FIMP), a Graph Neural Network (GNN) message-passing framework that leverages pretrained non-textual foundation models in graph-based tasks. We show that the self-attention layers of foundation models can effectively be repurposed on graphs to perform cross-node attention-based message-passing. Our model is evaluated on a real-world image network dataset and two biological applications (single-cell RNA sequencing data and fMRI brain activity recordings) in both finetuned and zero-shot settings. FIMP outperforms strong baselines, demonstrating that it can effectively leverage state-of-the-art foundation models in graph tasks.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - GOFA: A Generative One-For-All Model for Joint Graph Language Modeling [38.267339613261996]
We propose a novel generative graph language model GOFA to solve the problem.
GOFA is pre-trained on newly proposed graph-level next-word prediction, question-answering, and structural tasks.
The model is evaluated on various downstream tasks, demonstrating a strong ability to solve structural and contextual problems in zero-shot scenarios.
arXiv Detail & Related papers (2024-07-12T22:23:51Z) - Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks [4.552065156611815]
Graph Neural Networks (GNNs) are recognized as potent tools for processing real-world data organized in graph structures.
In inductive GNNs, which allow for the processing of graph-structured data without relying on predefined graph structures, are becoming increasingly important in a wide range of applications.
This paper identifies a new method of performing unsupervised model-stealing attacks against inductive GNNs.
arXiv Detail & Related papers (2024-05-20T18:01:15Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAGs) can generalize to unseen graphs and tasks across diverse domains.
We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks.
We demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer.
arXiv Detail & Related papers (2024-02-21T09:06:31Z) - Position: Graph Foundation Models are Already Here [53.737868336014735]
Graph Foundation Models (GFMs) are emerging as a significant research topic in the graph domain.
We propose a novel perspective for the GFM development by advocating for a graph vocabulary''
This perspective can potentially advance the future GFM design in line with the neural scaling laws.
arXiv Detail & Related papers (2024-02-03T17:24:36Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.