論文の概要: Towards Domain-Independent Supervised Discourse Parsing Through Gradient
Boosting
- arxiv url: http://arxiv.org/abs/2210.09565v1
- Date: Tue, 18 Oct 2022 03:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 14:29:45.329703
- Title: Towards Domain-Independent Supervised Discourse Parsing Through Gradient
Boosting
- Title(参考訳): 勾配強調によるドメイン非依存教師付き談話解析に向けて
- Authors: Patrick Huber and Giuseppe Carenini
- Abstract要約: 本稿では、談話解析におけるドメイン適応問題に直接対処する新しい、教師付きパラダイムを提案する。
具体的には、弱勾配分類器の段階モデルを用いて、ドメイン依存性を緩和するために設計された最初の完全教師付き談話フレームワークを紹介する。
- 参考スコア(独自算出の注目度): 30.615883375573432
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Discourse analysis and discourse parsing have shown great impact on many
important problems in the field of Natural Language Processing (NLP). Given the
direct impact of discourse annotations on model performance and
interpretability, robustly extracting discourse structures from arbitrary
documents is a key task to further improve computational models in NLP. To this
end, we present a new, supervised paradigm directly tackling the domain
adaptation issue in discourse parsing. Specifically, we introduce the first
fully supervised discourse parser designed to alleviate the domain dependency
through a staged model of weak classifiers by introducing the gradient boosting
framework.
- Abstract(参考訳): 談話分析と談話解析は自然言語処理(NLP)分野における多くの重要な問題に多大な影響を与えている。
談話アノテーションがモデルの性能と解釈性に直接影響することを考えると、任意の文書から言論構造を堅牢に抽出することは、nlpの計算モデルをさらに改善するための重要な課題である。
この目的のために,対話構文解析におけるドメイン適応問題に直接取り組む新しい教師付きパラダイムを提案する。
具体的には,勾配ブースティングフレームワークを導入することで,弱い分類器の段階的モデルを通じて,ドメイン依存を緩和するように設計された,最初の完全教師付き談話パーサを導入する。
関連論文リスト
- Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
文パターン構造解析(SPS)は、主に言語教育に使用される構文解析法である。
既存のSPSは教科書のコーパスに大きく依存しており、クロスドメイン機能に欠ける。
本稿では,大規模言語モデル(LLM)を自己学習フレームワーク内で活用する革新的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T05:30:48Z) - Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
テキストの内部修辞構造を解析する作業は、自然言語処理において難しい問題である。
近年のニューラルモデルの発展にもかかわらず、トレーニングのための大規模で高品質なコーパスの欠如は大きな障害となっている。
近年の研究では、遠方の監督を用いてこの制限を克服しようと試みている。
論文 参考訳(メタデータ) (2023-05-23T07:13:51Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z) - Improving Topic Segmentation by Injecting Discourse Dependencies [29.353285741379334]
本論文では, 談話依存構造を注入した談話認識型ニューラルトピックセグメンテーションモデルを提案する。
英語評価データセットに関する実証研究により,ニューラルネットワークのトピックセグメンタに上述の談話構造を注入することで,その性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-09-18T18:22:25Z) - Predicting Above-Sentence Discourse Structure using Distant Supervision
from Topic Segmentation [8.688675709130289]
RSTスタイルの談話解析は多くのNLPタスクにおいて重要な役割を担っている。
その重要性にもかかわらず、現代の談話解析における最も一般的な制限の1つは、大規模なデータセットの欠如である。
論文 参考訳(メタデータ) (2021-12-12T10:16:45Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
マルチパーティ会話は、対話的なターン間のセマンティックレベルの相関によって暗黙的に組織される。
対話談話分析は,基本談話単位間の係り受け構造と関係の予測に応用できる。
対話談話アノテーションを持つ既存のコーパスは、限られたサンプルサイズを持つ特定のドメインから収集される。
論文 参考訳(メタデータ) (2021-10-09T09:36:22Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。