論文の概要: Perceptual Multi-Exposure Fusion
- arxiv url: http://arxiv.org/abs/2210.09604v2
- Date: Wed, 19 Oct 2022 06:58:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 15:11:49.228889
- Title: Perceptual Multi-Exposure Fusion
- Title(参考訳): 知覚型マルチエクスプロイア融合
- Authors: Xiaoning Liu
- Abstract要約: 本稿では,細かなシャドウ/ハイライトの詳細を確実にするが,詳細化法よりも複雑さが低い知覚的マルチ露光融合法を提案する。
167個の画像シーケンスを含む静的シーンに適した大規模マルチ露光ベンチマークデータセットを構築した。
構築したデータセットの実験では,提案手法が既存の8つの最先端手法を視覚的およびMEF-SSIM値で上回ることを示した。
- 参考スコア(独自算出の注目度): 0.5076419064097732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an ever-increasing demand for high dynamic range (HDR) scene shooting,
multi-exposure image fusion (MEF) technology has abounded. In recent years,
multi-scale exposure fusion approaches based on detail-enhancement have led the
way for improvement in highlight and shadow details. Most of such methods,
however, are too computationally expensive to be deployed on mobile devices.
This paper presents a perceptual multi-exposure fusion method that not just
ensures fine shadow/highlight details but with lower complexity than
detailenhanced methods. We analyze the potential defects of three classical
exposure measures in lieu of using detail-enhancement component and improve two
of them, namely adaptive Wellexposedness (AWE) and the gradient of color images
(3-D gradient). AWE designed in YCbCr color space considers the difference
between varying exposure images. 3-D gradient is employed to extract fine
details. We build a large-scale multiexposure benchmark dataset suitable for
static scenes, which contains 167 image sequences all told. Experiments on the
constructed dataset demonstrate that the proposed method exceeds existing eight
state-of-the-art approaches in terms of visually and MEF-SSIM value. Moreover,
our approach can achieve a better improvement for current image enhancement
techniques, ensuring fine detail in bright light.
- Abstract(参考訳): 高ダイナミックレンジ(HDR)シーンシューティングの需要が高まっているため、マルチ露光画像融合(MEF)技術は増加傾向にある。
近年では、詳細化に基づくマルチスケール露光融合アプローチにより、ハイライトやシャドウの詳細の改善が進んでいる。
しかし、そのような方法のほとんどは計算コストがかかりすぎてモバイルデバイスにデプロイできない。
本稿では,細かなシャドウ/ハイライトの詳細を確実にするだけでなく,詳細化手法よりも複雑さの低い知覚的マルチ露光融合法を提案する。
本研究では, ディテールエンハンスメント成分の代わりに, 3つの古典的露出指標の潜在的な欠陥を分析し, 適応的ウェルエクスポースネス (awe) とカラー画像の勾配 (3-d 勾配) の2つを改善した。
YCbCr色空間で設計されたAWEは、様々な露光画像の違いを考慮する。
細部を抽出するために3次元勾配を用いる。
静的なシーンに適した大規模マルチ露光ベンチマークデータセットを構築し,全画面に167の画像シーケンスを含む。
構築したデータセットの実験では,提案手法が既存の8つの最先端手法を視覚的およびMEF-SSIM値で上回ることを示した。
さらに,本手法は,現在の画像強調技術の改善を図り,明度の高い細部を確保できる。
関連論文リスト
- Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
本稿では,露光ブラケット写真を利用して画像復元と拡張作業を統合することを提案する。
実世界のペアの収集が困難であるため,まず合成ペアデータを用いてモデルを事前学習する手法を提案する。
特に,時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
低照度画像強調は、薄暗い環境で収集された画像の知覚を改善することを目的としている。
既存の方法では、識別された輝度情報を適応的に抽出することができず、露光過多や露光過多を容易に引き起こすことができる。
MSATrというマルチスケールアテンション変換器を提案し,光バランスの局所的・グローバル的特徴を十分に抽出し,視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-12-27T10:07:11Z) - Latent Feature-Guided Diffusion Models for Shadow Removal [50.02857194218859]
本稿では,拡散過程における影領域の詳細を段階的に洗練する,有望なアプローチとして拡散モデルの利用を提案する。
シャドウフリー画像の特徴を継承する学習された潜在特徴空間を条件付けすることで,この処理を改善する。
AISTDデータセット上でRMSEを13%向上させる手法の有効性を示す。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
本稿では,低照度超解像課題の性質を深く理解しようとする,特殊二変調学習フレームワークを提案する。
Illuminance-Semantic Dual Modulation (ISDM) コンポーネントを開発した。
包括的実験は、我々のアプローチが多様で挑戦的な超低照度条件に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-09-11T06:55:32Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - Multi-Exposure HDR Composition by Gated Swin Transformer [8.619880437958525]
本稿では,Swin Transformerに基づく新しいマルチ露光融合モデルを提案する。
露光空間ピラミッドにおける遠距離文脈依存性を自己認識機構により活用する。
実験により,本モデルが現在のマルチ露光HDR画像モデルと同等の精度が得られることが示された。
論文 参考訳(メタデータ) (2023-03-15T15:38:43Z) - Variational Approach for Intensity Domain Multi-exposure Image Fusion [11.678822620192435]
本稿では,従来の表示装置に直接表示可能な融合画像を生成する方法を提案する。
その野望は、照度が悪く、明るく照らされた地域で詳細を保存することである。
論文 参考訳(メタデータ) (2022-07-09T06:31:34Z) - Bridge the Vision Gap from Field to Command: A Deep Learning Network
Enhancing Illumination and Details [17.25188250076639]
我々は,明るさを調整し,細部を同時に強化する2ストリームフレームワークNEIDを提案する。
提案手法は,光強調 (LE), 細粒化 (DR), 特徴拡散 (FF) モジュールの3つの部分から構成される。
論文 参考訳(メタデータ) (2021-01-20T09:39:57Z) - Learning Multi-Scale Photo Exposure Correction [51.57836446833474]
露出を間違えた写真を撮影することは、カメラベースの画像の誤りの主な原因である。
本稿では,各サブプロブレムに個別に対処する粗大な深層ニューラルネットワーク(DNN)モデルを提案する。
提案手法は,未露出画像における既存の最先端手法と同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-25T19:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。