Generative models uncertainty estimation
- URL: http://arxiv.org/abs/2210.09767v1
- Date: Tue, 18 Oct 2022 11:30:24 GMT
- Title: Generative models uncertainty estimation
- Authors: Lucio Anderlini, Constantine Chimpoesh, Nikita Kazeev and Agata
Shishigina
- Abstract summary: We propose three methods to estimate the uncertainty of generative models inside and outside of the training phase space region.
A test of the proposed methods on the LHCb RICH fast simulation is also presented.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years fully-parametric fast simulation methods based on generative
models have been proposed for a variety of high-energy physics detectors. By
their nature, the quality of data-driven models degrades in the regions of the
phase space where the data are sparse. Since machine-learning models are hard
to analyse from the physical principles, the commonly used testing procedures
are performed in a data-driven way and can't be reliably used in such regions.
In our work we propose three methods to estimate the uncertainty of generative
models inside and outside of the training phase space region, along with
data-driven calibration techniques. A test of the proposed methods on the LHCb
RICH fast simulation is also presented.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Generative Geostatistical Modeling from Incomplete Well and Imaged Seismic Observations with Diffusion Models [0.24578723416255752]
We introduce a novel approach to synthesizing subsurface velocity models using diffusion generative models.
Our method leverages incomplete well and seismic observations to produce high-fidelity velocity samples without requiring fully sampled training datasets.
arXiv Detail & Related papers (2024-05-16T20:30:43Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
Surjective Sequential Neural Likelihood estimation is a novel method for simulation-based inference.
By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets.
arXiv Detail & Related papers (2023-08-02T10:02:38Z) - Learning new physics efficiently with nonparametric methods [11.970219534238444]
We present a machine learning approach for model-independent new physics searches.
The corresponding algorithm is powered by recent large-scale implementations of kernel methods.
We show that our approach has dramatic advantages compared to neural network implementations in terms of training times and computational resources.
arXiv Detail & Related papers (2022-04-05T16:17:59Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
This study presents a new modeling framework, named physics regularized Gaussian process (PRGP)
This novel approach can encode physics models, i.e., classical traffic flow models, into the Gaussian process architecture and so as to regularize the Machine Learning training process.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset that is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-07-14T17:27:23Z) - Real-Time Model Calibration with Deep Reinforcement Learning [4.707841918805165]
We propose a novel framework for inference of model parameters based on reinforcement learning.
The proposed methodology is demonstrated and evaluated on two model-based diagnostics test cases.
arXiv Detail & Related papers (2020-06-07T00:11:42Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
This study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models into the machine learning architecture.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-02-06T17:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.