論文の概要: Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus
- arxiv url: http://arxiv.org/abs/2210.09880v1
- Date: Tue, 18 Oct 2022 14:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 14:48:33.981522
- Title: Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus
- Title(参考訳): 抽象・推論コーパスのグラフ・制約・探索
- Authors: Yudong Xu, Elias B. Khalil, Scott Sanner
- Abstract要約: ARC(Abstraction and Reasoning Corpus)は、汎用人工知能アルゴリズムのパフォーマンスをベンチマークすることを目的としている。
ARCは広範な一般化と少数ショットの学習に重点を置いているため、純粋な機械学習を使って解決することは不可能である。
本稿では,グラフを用いた画像の表現と,正しいプログラムの検索を行う新しいオブジェクト中心のフレームワークである,グラフ抽象化を用いた抽象推論を提案する。
- 参考スコア(独自算出の注目度): 19.27379168184259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Abstraction and Reasoning Corpus (ARC) aims at benchmarking the
performance of general artificial intelligence algorithms. The ARC's focus on
broad generalization and few-shot learning has made it impossible to solve
using pure machine learning. A more promising approach has been to perform
program synthesis within an appropriately designed Domain Specific Language
(DSL). However, these too have seen limited success. We propose Abstract
Reasoning with Graph Abstractions (ARGA), a new object-centric framework that
first represents images using graphs and then performs a search for a correct
program in a DSL that is based on the abstracted graph space. The complexity of
this combinatorial search is tamed through the use of constraint acquisition,
state hashing, and Tabu search. An extensive set of experiments demonstrates
the promise of ARGA in tackling some of the complicated tasks of the ARC rather
efficiently, producing programs that are correct and easy to understand.
- Abstract(参考訳): ARC(Abstraction and Reasoning Corpus)は、汎用人工知能アルゴリズムのパフォーマンスをベンチマークすることを目的としている。
ARCは広範な一般化と少数ショットの学習に重点を置いているため、純粋な機械学習を使って解決することは不可能である。
より有望なアプローチは、適切に設計されたドメイン特化言語(DSL)内でプログラム合成を実行することである。
しかし、これらもあまり成功しなかった。
本稿では、まずグラフを用いて画像を表現し、次に抽象グラフ空間に基づくdslで正しいプログラムを検索する新しいオブジェクト中心フレームワークである、graph abstracts(arga)を用いた抽象推論を提案する。
この組合せ探索の複雑さは、制約獲得、状態ハッシュ、およびタブサーチによって解決される。
大規模な実験は、ARCの複雑なタスクにもっと効率的に取り組み、正確で理解しやすいプログラムを生成するというARGAの可能性を実証している。
関連論文リスト
- Program Synthesis using Inductive Logic Programming for the Abstraction and Reasoning Corpus [1.9662978733004604]
ARC(Abstraction and Reasoning Corpus)は、任意の機械学習手法では解決できない。
本稿では,AIの分岐であるインダクティブ論理プログラミング(ILP)を用いてARCを解くプログラム合成システムを提案する。
論文 参考訳(メタデータ) (2024-05-10T11:22:31Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
大規模言語モデル(LLM)に基づくKG上の複雑な推論スキーマを提案する。
任意の一階論理クエリを二分木分解により拡張し、LLMの推論能力を刺激する。
広く使われているデータセットに対する実験では、LACTは高度な手法よりも大幅に改善されている(平均+5.5% MRRスコア)。
論文 参考訳(メタデータ) (2024-05-02T18:12:08Z) - Neural networks for abstraction and reasoning: Towards broad
generalization in machines [3.165509887826658]
我々は Abstraction & Reasoning Corpus (ARC) を解くための新しいアプローチについて検討する。
本研究では,DreamCoderのニューロシンボリック推論解法をARCに適用する。
我々は、DreamCoderがARCタスクを解くことを可能にするPeARL(Perceptual Abstraction and Reasoning Language)言語を提示する。
ARCに関する今後の研究を容易にするために、arckit Pythonライブラリを公開しています。
論文 参考訳(メタデータ) (2024-02-05T20:48:57Z) - Generalized Planning for the Abstraction and Reasoning Corpus [10.377424252002795]
GPAR(Generalized Planning for Abstract Reasoning)を提案する。
ARC問題を一般化計画(GP)問題とみなし、解はポインタを持つ計画プログラムとして形式化される。
本稿では,行動モデル,述語,議論,計画プログラムの有効な構造に対する制約という形で,ARC特有のドメイン知識を用いてGPソルバをスケールアップする方法を示す。
論文 参考訳(メタデータ) (2024-01-15T02:25:00Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
我々は,既存の手法を関係性に配慮した方法で活用し,アンサンブルを学習することを提案する。
関係認識アンサンブルを用いてこれらのセマンティクスを探索すると、一般的なアンサンブル法よりもはるかに大きな検索空間が得られる。
本稿では,リレーショナルなアンサンブル重みを独立に検索する分割探索合成アルゴリズムRelEns-DSCを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:40:12Z) - ArchGym: An Open-Source Gymnasium for Machine Learning Assisted
Architecture Design [52.57999109204569]
ArchGymは、さまざまな検索アルゴリズムをアーキテクチャシミュレータに接続するオープンソースのフレームワークである。
我々は、カスタムメモリコントローラ、ディープニューラルネットワークアクセラレータ、AR/VRワークロード用のカスタムSOCを設計する際に、複数のバニラおよびドメイン固有の検索アルゴリズムにわたってArchGymを評価する。
論文 参考訳(メタデータ) (2023-06-15T06:41:23Z) - LLMs and the Abstraction and Reasoning Corpus: Successes, Failures, and
the Importance of Object-based Representations [50.431003245201644]
GPT-4 は 1D-ARC や単純な ARC サブセットのような非言語領域で完全に「推論」できないことを示す。
本稿では,外部ツールから得られるオブジェクトベース表現を提案する。これにより,解決されたARCタスクのパフォーマンスがほぼ倍増し,より簡単な1D-ARC上でのほぼ完璧なスコアが得られた。
論文 参考訳(メタデータ) (2023-05-26T16:32:17Z) - ShapeCoder: Discovering Abstractions for Visual Programs from
Unstructured Primitives [44.01940125080666]
形状のデータセットを非構造化プリミティブで表現できる最初のシステムであるShapeCoderを提案する。
ShapeCoderは、ハイレベルな関係をキャプチャし、外部自由度を排除し、より良いデータセット圧縮を実現する抽象化ライブラリの発見方法を示す。
論文 参考訳(メタデータ) (2023-05-09T17:55:48Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
フレキシブルコンテキストスコープを用いたグラフコントラスト学習(略してUGCL)という自己教師型学習手法を提案する。
本アルゴリズムは,隣接行列のパワーを制御し,コンテキストスコープによるフレキシブルな文脈表現を構築する。
局所的スコープと文脈的スコープの両方の表現に基づいて、distLはグラフ表現学習のための非常に単純な対照的な損失関数を最適化する。
論文 参考訳(メタデータ) (2022-10-17T07:16:17Z) - Neural-guided, Bidirectional Program Search for Abstraction and
Reasoning [3.2348834229786885]
本稿では, ブルートフォース探索をベースとしない抽象化と推論の2つのアプローチの基礎を定めている。
まずDreamCoderと呼ばれる既存のプログラム合成システムを用いて、これまで解決されてきたタスクからシンボリックな抽象化を作成する。
第二に、人間がARCに近づく方法によって動機付けられた推論アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-22T00:41:47Z) - Weakly Supervised Visual Semantic Parsing [49.69377653925448]
SGG(Scene Graph Generation)は、画像からエンティティ、述語、それらの意味構造を抽出することを目的としている。
既存のSGGメソッドでは、トレーニングのために何百万もの手動アノテーション付きバウンディングボックスが必要である。
本稿では,ビジュアルセマンティック・パーシング,VSPNet,グラフベースの弱教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-08T03:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。