論文の概要: Program Synthesis using Inductive Logic Programming for the Abstraction and Reasoning Corpus
- arxiv url: http://arxiv.org/abs/2405.06399v1
- Date: Fri, 10 May 2024 11:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 15:58:09.068319
- Title: Program Synthesis using Inductive Logic Programming for the Abstraction and Reasoning Corpus
- Title(参考訳): 抽象推論コーパスのための帰納的論理プログラミングを用いたプログラム合成
- Authors: Filipe Marinho Rocha, Inês Dutra, Vítor Santos Costa,
- Abstract要約: ARC(Abstraction and Reasoning Corpus)は、任意の機械学習手法では解決できない。
本稿では,AIの分岐であるインダクティブ論理プログラミング(ILP)を用いてARCを解くプログラム合成システムを提案する。
- 参考スコア(独自算出の注目度): 1.9662978733004604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Abstraction and Reasoning Corpus (ARC) is a general artificial intelligence benchmark that is currently unsolvable by any Machine Learning method, including Large Language Models (LLMs). It demands strong generalization and reasoning capabilities which are known to be weaknesses of Neural Network based systems. In this work, we propose a Program Synthesis system that uses Inductive Logic Programming (ILP), a branch of Symbolic AI, to solve ARC. We have manually defined a simple Domain Specific Language (DSL) that corresponds to a small set of object-centric abstractions relevant to ARC. This is the Background Knowledge used by ILP to create Logic Programs that provide reasoning capabilities to our system. The full system is capable of generalize to unseen tasks, since ILP can create Logic Program(s) from few examples, in the case of ARC: pairs of Input-Output grids examples for each task. These Logic Programs are able to generate Objects present in the Output grid and the combination of these can form a complete program that transforms an Input grid into an Output grid. We randomly chose some tasks from ARC that dont require more than the small number of the Object primitives we implemented and show that given only these, our system can solve tasks that require each, such different reasoning.
- Abstract(参考訳): Abstraction and Reasoning Corpus (ARC) は汎用人工知能ベンチマークであり、Large Language Models (LLMs)を含むあらゆる機械学習手法では未解決である。
ニューラルネットワークベースのシステムの弱点として知られる強力な一般化と推論機能を必要とする。
本研究では,シンボルAIの分岐であるインダクティブ論理プログラミング(ILP)を用いてARCを解くプログラム合成システムを提案する。
私たちは、ARCに関連する小さなオブジェクト中心の抽象セットに対応する、シンプルなドメイン特化言語(DSL)を手動で定義しました。
ILPがシステムに推論機能を提供するロジックプログラムを作成するために使用している背景知識です。
ILPはいくつかの例からLogic Program(s)を作成することができるので、完全なシステムは未確認のタスクに一般化することができる。
これらのロジックプログラムはアウトプットグリッドに存在するオブジェクトを生成することができ、これらを組み合わせることで、入力グリッドをアウトプットグリッドに変換する完全なプログラムを形成することができる。
我々は、実装したObjectプリミティブの少数以上を必要としないARCからいくつかのタスクをランダムに選択し、これらのみを前提として、このような異なる推論を必要とするタスクをシステムで解決できることを示しました。
関連論文リスト
- Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
大規模言語モデル(LLM)に基づくKG上の複雑な推論スキーマを提案する。
任意の一階論理クエリを二分木分解により拡張し、LLMの推論能力を刺激する。
広く使われているデータセットに対する実験では、LACTは高度な手法よりも大幅に改善されている(平均+5.5% MRRスコア)。
論文 参考訳(メタデータ) (2024-05-02T18:12:08Z) - Neural networks for abstraction and reasoning: Towards broad
generalization in machines [3.165509887826658]
我々は Abstraction & Reasoning Corpus (ARC) を解くための新しいアプローチについて検討する。
本研究では,DreamCoderのニューロシンボリック推論解法をARCに適用する。
我々は、DreamCoderがARCタスクを解くことを可能にするPeARL(Perceptual Abstraction and Reasoning Language)言語を提示する。
ARCに関する今後の研究を容易にするために、arckit Pythonライブラリを公開しています。
論文 参考訳(メタデータ) (2024-02-05T20:48:57Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - A Divide-Align-Conquer Strategy for Program Synthesis [8.595181704811889]
本稿では,大規模プログラムの探索を複数の小さなプログラム合成問題に分割する例によって,構成セグメント化がプログラミングに応用可能であることを示す。
入力と出力における構成部品の構造的アライメントは、プログラム探索を導くのに使用されるペアワイズ対応に繋がる。
論文 参考訳(メタデータ) (2023-01-08T19:10:55Z) - Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus [19.27379168184259]
ARC(Abstraction and Reasoning Corpus)は、汎用人工知能アルゴリズムのパフォーマンスをベンチマークすることを目的としている。
ARCは広範な一般化と少数ショットの学習に重点を置いているため、純粋な機械学習を使って解決することは不可能である。
本稿では,グラフを用いた画像の表現と,正しいプログラムの検索を行う新しいオブジェクト中心のフレームワークである,グラフ抽象化を用いた抽象推論を提案する。
論文 参考訳(メタデータ) (2022-10-18T14:13:43Z) - Join-Chain Network: A Logical Reasoning View of the Multi-head Attention
in Transformer [59.73454783958702]
本稿では,多くの結合演算子を連結して出力論理式をモデル化するシンボリック推論アーキテクチャを提案する。
特に,このような結合鎖のアンサンブルが'ツリー構造'の1次論理式であるFOETの広い部分集合を表現できることを実証する。
変圧器における多頭部自己保持モジュールは,確率的述語空間における結合作用素の結合境界を実装する特別なニューラル演算子として理解することができる。
論文 参考訳(メタデータ) (2022-10-06T07:39:58Z) - GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic
Synthesis [34.54658276390227]
深層強化学習(DRL)は複雑な問題における学習と一般化に関する高次知能を欠いている。
従来の研究は、論理駆動の振る舞いを示すDRLポリシーとして、ホワイトボックス論理プログラムを直接合成しようと試みていた。
本稿では,階層的かつ厳密な因果論理プログラムを合成するためのGALOIS(Generalizable Logic Synthesis)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-27T02:50:13Z) - Neural-guided, Bidirectional Program Search for Abstraction and
Reasoning [3.2348834229786885]
本稿では, ブルートフォース探索をベースとしない抽象化と推論の2つのアプローチの基礎を定めている。
まずDreamCoderと呼ばれる既存のプログラム合成システムを用いて、これまで解決されてきたタスクからシンボリックな抽象化を作成する。
第二に、人間がARCに近づく方法によって動機付けられた推論アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-22T00:41:47Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
プログラム合成エンジンにおける部分的なプログラム表現手法について紹介する。
モジュラーニューラルネットワークとして実装された近似実行モデルを学ぶ。
これらのハイブリッドニューロシンボリック表現は、実行誘導型シンセサイザーがより強力な言語構成を使うことができることを示す。
論文 参考訳(メタデータ) (2020-12-23T20:40:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。