論文の概要: Post-hoc analysis of Arabic transformer models
- arxiv url: http://arxiv.org/abs/2210.09990v1
- Date: Tue, 18 Oct 2022 16:53:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 14:49:15.164303
- Title: Post-hoc analysis of Arabic transformer models
- Title(参考訳): アラビア変圧器モデルのポストホック解析
- Authors: Ahmed Abdelali and Nadir Durrani and Fahim Dalvi and Hassan Sajjad
- Abstract要約: 我々は、アラビア語の異なる方言で訓練されたトランスフォーマーモデルにおいて、言語情報がどのようにコード化されているかを探る。
アラビア語の異なる方言に対する形態的タグ付けタスクと方言識別タスクを用いて、モデル上で層とニューロン分析を行う。
- 参考スコア(独自算出の注目度): 20.741730718486032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arabic is a Semitic language which is widely spoken with many dialects. Given
the success of pre-trained language models, many transformer models trained on
Arabic and its dialects have surfaced. While there have been an extrinsic
evaluation of these models with respect to downstream NLP tasks, no work has
been carried out to analyze and compare their internal representations. We
probe how linguistic information is encoded in the transformer models, trained
on different Arabic dialects. We perform a layer and neuron analysis on the
models using morphological tagging tasks for different dialects of Arabic and a
dialectal identification task. Our analysis enlightens interesting findings
such as: i) word morphology is learned at the lower and middle layers, ii)
while syntactic dependencies are predominantly captured at the higher layers,
iii) despite a large overlap in their vocabulary, the MSA-based models fail to
capture the nuances of Arabic dialects, iv) we found that neurons in embedding
layers are polysemous in nature, while the neurons in middle layers are
exclusive to specific properties
- Abstract(参考訳): アラビア語はセム語であり、多くの方言で広く話されている。
事前訓練された言語モデルの成功を踏まえ、アラビア語とその方言で訓練された多くのトランスフォーマーモデルが浮上した。
下流のNLPタスクに関しては,これらのモデルが本質的に評価されているが,内部表現を解析・比較する作業は行われていない。
アラビア語の異なる方言で訓練されたトランスフォーマーモデルにおいて,言語情報がどのようにエンコードされているかを調べる。
アラビア語の異なる方言に対する形態的タグ付けタスクと方言識別タスクを用いて、モデル上で層とニューロン分析を行う。
私たちの分析は、次のような興味深い発見を啓蒙する。
一 下層及び中層で語形態学を学ぶこと。
二 統語的依存関係が上位層で主に捕捉されているとき。
三 語彙の重複が大きいにもかかわらず、MSAベースのモデルは、アラビア語方言のニュアンスを捉えない。
四 埋め込み層内のニューロンは自然界において多義的であるのに対し、中層内のニューロンは特定の性質に排他的であること。
関連論文リスト
- AlcLaM: Arabic Dialectal Language Model [2.8477895544986955]
ソーシャルメディアプラットフォームから収集した340万文からなるアラビア語方言コーパスを構築した。
我々はこのコーパスを用いて語彙を拡大し、BERTベースのモデルをスクラッチから再訓練する。
AlcLaMという名前の私たちのモデルは、既存のモデルで使われているデータのごく一部を表す、わずか13GBのテキストで訓練された。
論文 参考訳(メタデータ) (2024-07-18T02:13:50Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Arabic Sentiment Analysis with Noisy Deep Explainable Model [48.22321420680046]
本稿では,アラビア語の感情分類フレームワークを提案する。
提案フレームワークは,局所的な代理説明可能なモデルをトレーニングすることで,特定の予測を説明することができる。
アラビアサデータセットの公開ベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-09-24T19:26:53Z) - Parameter and Data Efficient Continual Pre-training for Robustness to
Dialectal Variance in Arabic [9.004920233490642]
多言語BERT(mBERT)がアラビア語単言語データに漸進的に事前訓練されることは、トレーニング時間が少なく、我々のカスタム単言語単言語モデルと比較すると、同等の精度が得られることを示す。
次に,(1)少数の方言データを用いて連続的な微調整を行い,(2)アラビア語から英語への平行なデータと翻訳言語モデリング損失関数を探索する。
論文 参考訳(メタデータ) (2022-11-08T02:51:57Z) - Causal Analysis of Syntactic Agreement Neurons in Multilingual Language
Models [28.036233760742125]
我々は多言語言語モデル(XGLMと多言語BERT)を様々な言語で因果的に探索する。
自己回帰型多言語言語モデルでは、言語間で大きなニューロンオーバーラップが見られるが、マスキング言語モデルではない。
論文 参考訳(メタデータ) (2022-10-25T20:43:36Z) - Is neural language acquisition similar to natural? A chronological
probing study [0.0515648410037406]
本稿では,MultiBERTやT5といったトランスフォーマー英語モデルの時系列探索について述べる。
コーパスの学習過程において,モデルが学習した言語に関する情報を比較した。
その結果,1)訓練の初期段階に言語情報を取得すること,2)両言語モデルが様々な言語レベルから様々な特徴を捉える能力を示した。
論文 参考訳(メタデータ) (2022-07-01T17:24:11Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
多言語事前学習モデルは文法に関する言語・ユニバーサルの抽象化を導出できると推測する。
43の言語と14のモルフォシンタクティックなカテゴリーで、最先端のニューロンレベルのプローブを用いて、初めて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-05-04T12:22:31Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - Interpreting Arabic Transformer Models [18.98681439078424]
我々は、アラビア語の様々な種類に基づいて訓練された、アラビア語の事前訓練されたモデルにおいて、言語情報がどのように符号化されているかを探る。
MSA(現代の標準アラビア語)に基づく2つの形態的タグ付けタスクと、方言のPOSタグ付けタスクと、方言の識別タスクである。
論文 参考訳(メタデータ) (2022-01-19T06:32:25Z) - A Simple Joint Model for Improved Contextual Neural Lemmatization [60.802451210656805]
本稿では,20言語で最先端の成果を得られる,単純結合型ニューラルモデルを提案する。
本論文では,トレーニングと復号化に加えて,本モデルについて述べる。
論文 参考訳(メタデータ) (2019-04-04T02:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。