Lattice-Based Quantum Advantage from Rotated Measurements
- URL: http://arxiv.org/abs/2210.10143v3
- Date: Tue, 2 Jul 2024 16:29:20 GMT
- Title: Lattice-Based Quantum Advantage from Rotated Measurements
- Authors: Yusuf Alnawakhtha, Atul Mantri, Carl A. Miller, Daochen Wang,
- Abstract summary: We show a new technique that uses the entire range of qubit measurements from the $XY$-plane.
We construct a one-round protocol for blind remote preparation of an arbitrary state on the $XY$-plane up to a Pauli-$Z$ correction.
- Score: 2.0249250133493195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trapdoor claw-free functions (TCFs) are immensely valuable in cryptographic interactions between a classical client and a quantum server. Typically, a protocol has the quantum server prepare a superposition of two-bit strings of a claw and then measure it using Pauli-$X$ or $Z$ measurements. In this paper, we demonstrate a new technique that uses the entire range of qubit measurements from the $XY$-plane. We show the advantage of this approach in two applications. First, building on (Brakerski et al. 2018, Kalai et al. 2022), we show an optimized two-round proof of quantumness whose security can be expressed directly in terms of the hardness of the LWE (learning with errors) problem. Second, we construct a one-round protocol for blind remote preparation of an arbitrary state on the $XY$-plane up to a Pauli-$Z$ correction.
Related papers
- Linear gate bounds against natural functions for position-verification [0.0]
A quantum position-verification scheme attempts to verify the spatial location of a prover.
We consider two well-studied position-verification schemes known as $f$-routing and $f$-BB84.
arXiv Detail & Related papers (2024-02-28T19:00:10Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Efficient Pauli channel estimation with logarithmic quantum memory [10.95781315121668]
We show that a protocol can estimate the eigenvalues of a Pauli channel to error $epsilon$ using only $O(log n/epsilon2)$ ancilla qubits and $tildeO(n2/epsilon2)$ measurements.
Our results imply, to our knowledge, the first quantum learning task where logarithmically many qubits of quantum memory suffice for an exponential statistical advantage.
arXiv Detail & Related papers (2023-09-25T17:53:12Z) - Quantum Symmetric Private Information Retrieval with Secure Storage and
Eavesdroppers [32.97918488607827]
We consider both the classical and quantum variations of $X$-secure, $E$-eavesdropped and $T$-colluding symmetric private information retrieval (SPIR)
We first develop a scheme for classical $X$-secure, $E$-eavesdropped and $T$-colluding SPIR (XSETSPIR) based on a modified version of cross subspace alignment (CSA)
arXiv Detail & Related papers (2023-08-21T17:30:38Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum advantages for Pauli channel estimation [2.5496329090462626]
entangled measurements provide an exponential advantage in sample complexity for Pauli channel estimation.
We show how to apply the ancilla-assisted estimation protocol to a practical quantum benchmarking task.
arXiv Detail & Related papers (2021-08-19T04:10:28Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z) - Quantum Differentially Private Sparse Regression Learning [132.1981461292324]
We devise an efficient quantum differentially private (QDP) Lasso estimator to solve sparse regression tasks.
Last, we exhibit that the QDP Lasso attains a near-optimal utility bound $tildeO(N-2/3)$ with privacy guarantees.
arXiv Detail & Related papers (2020-07-23T10:50:42Z) - Succinct Blind Quantum Computation Using a Random Oracle [0.8702432681310399]
We give a new universal blind quantum computation protocol.
The protocol's first phase is succinct, that is, its complexity is independent of circuit size.
arXiv Detail & Related papers (2020-04-27T07:47:11Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.