Nonparametric Quantile Regression: Non-Crossing Constraints and
Conformal Prediction
- URL: http://arxiv.org/abs/2210.10161v1
- Date: Tue, 18 Oct 2022 20:59:48 GMT
- Title: Nonparametric Quantile Regression: Non-Crossing Constraints and
Conformal Prediction
- Authors: Wenlu Tang and Guohao Shen and Yuanyuan Lin and Jian Huang
- Abstract summary: We propose a nonparametric quantile regression method using deep neural networks with a rectified linear unit penalty function to avoid quantile crossing.
We establish non-asymptotic upper bounds for the excess risk of the proposed nonparametric quantile regression function estimators.
Numerical experiments including simulation studies and a real data example are conducted to demonstrate the effectiveness of the proposed method.
- Score: 2.654399717608053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a nonparametric quantile regression method using deep neural
networks with a rectified linear unit penalty function to avoid quantile
crossing. This penalty function is computationally feasible for enforcing
non-crossing constraints in multi-dimensional nonparametric quantile
regression. We establish non-asymptotic upper bounds for the excess risk of the
proposed nonparametric quantile regression function estimators. Our error
bounds achieve optimal minimax rate of convergence for the Holder class, and
the prefactors of the error bounds depend polynomially on the dimension of the
predictor, instead of exponentially. Based on the proposed non-crossing
penalized deep quantile regression, we construct conformal prediction intervals
that are fully adaptive to heterogeneity. The proposed prediction interval is
shown to have good properties in terms of validity and accuracy under
reasonable conditions. We also derive non-asymptotic upper bounds for the
difference of the lengths between the proposed non-crossing conformal
prediction interval and the theoretically oracle prediction interval. Numerical
experiments including simulation studies and a real data example are conducted
to demonstrate the effectiveness of the proposed method.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
Sparse linear regression methods for high-dimensional data commonly assume that residuals have constant variance, which can be violated in practice.
This paper proposes estimating high-dimensional heteroscedastic linear regression models using a heteroscedastic partitioned empirical Bayes Expectation Conditional Maximization algorithm.
arXiv Detail & Related papers (2023-09-15T22:06:29Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z) - On Low-rank Trace Regression under General Sampling Distribution [9.699586426043885]
We show that cross-validated estimators satisfy near-optimal error bounds on general assumptions.
We also show that the cross-validated estimator outperforms the theory-inspired approach of selecting the parameter.
arXiv Detail & Related papers (2019-04-18T02:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.