End-to-End Entity Detection with Proposer and Regressor
- URL: http://arxiv.org/abs/2210.10260v5
- Date: Mon, 22 May 2023 09:10:01 GMT
- Title: End-to-End Entity Detection with Proposer and Regressor
- Authors: Xueru Wen, Changjiang Zhou, Haotian Tang, Luguang Liang, Yu Jiang,
Hong Qi
- Abstract summary: nested entity recognition receives extensive attention for the widespread existence of the nesting scenario.
An end-to-end entity detection approach with proposer and regressor is presented in this paper to tackle the issues.
Our model achieves advanced performance in flat and nested NER, achieving a new state-of-the-art F1 score of 80.74 on the GENIA dataset and 72.38 on the WeiboNER dataset.
- Score: 6.25916397918329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named entity recognition is a traditional task in natural language
processing. In particular, nested entity recognition receives extensive
attention for the widespread existence of the nesting scenario. The latest
research migrates the well-established paradigm of set prediction in object
detection to cope with entity nesting. However, the manual creation of query
vectors, which fail to adapt to the rich semantic information in the context,
limits these approaches. An end-to-end entity detection approach with proposer
and regressor is presented in this paper to tackle the issues. First, the
proposer utilizes the feature pyramid network to generate high-quality entity
proposals. Then, the regressor refines the proposals for generating the final
prediction. The model adopts encoder-only architecture and thus obtains the
advantages of the richness of query semantics, high precision of entity
localization, and easiness of model training. Moreover, we introduce the novel
spatially modulated attention and progressive refinement for further
improvement. Extensive experiments demonstrate that our model achieves advanced
performance in flat and nested NER, achieving a new state-of-the-art F1 score
of 80.74 on the GENIA dataset and 72.38 on the WeiboNER dataset.
Related papers
- Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - Weakly Supervised Open-Vocabulary Object Detection [31.605276665964787]
We propose a novel weakly supervised open-vocabulary object detection framework, namely WSOVOD, to extend traditional WSOD.
To achieve this, we explore three vital strategies, including dataset-level feature adaptation, image-level salient object localization, and region-level vision-language alignment.
arXiv Detail & Related papers (2023-12-19T18:59:53Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities.
We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions.
We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points.
arXiv Detail & Related papers (2023-11-06T16:40:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Informed Named Entity Recognition Decoding for Generative Language
Models [3.5323691899538128]
We propose Informed Named Entity Recognition Decoding (iNERD), which treats named entity recognition as a generative process.
We coarse-tune our model on a merged named entity corpus to strengthen its performance, evaluate five generative language models on eight named entity recognition datasets, and achieve remarkable results.
arXiv Detail & Related papers (2023-08-15T14:16:29Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
Named entity recognition (NER) is an important research problem in natural language processing.
This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task.
arXiv Detail & Related papers (2023-03-20T05:11:22Z) - Global Pointer: Novel Efficient Span-based Approach for Named Entity
Recognition [7.226094340165499]
Named entity recognition (NER) task aims at identifying entities from a piece of text that belong to predefined semantic types.
The state-of-the-art solutions for flat entities NER commonly suffer from capturing the fine-grained semantic information in underlying texts.
We propose a novel span-based NER framework, namely Global Pointer (GP), that leverages the relative positions through a multiplicative attention mechanism.
arXiv Detail & Related papers (2022-08-05T09:19:46Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NER model has achieved promising performance on standard NER benchmarks.
Recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition.
We propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective.
arXiv Detail & Related papers (2022-04-09T05:18:20Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
We study the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios.
The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations.
We propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction.
arXiv Detail & Related papers (2020-05-22T22:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.