Efficient Bi-Level Optimization for Recommendation Denoising
- URL: http://arxiv.org/abs/2210.10321v2
- Date: Thu, 1 Jun 2023 15:32:39 GMT
- Title: Efficient Bi-Level Optimization for Recommendation Denoising
- Authors: Zongwei Wang, Min Gao, Wentao Li, Junliang Yu, Linxin Guo, Hongzhi Yin
- Abstract summary: implicit feedback possesses a high degree of noise, which significantly undermines recommendation quality.
We model recommendation denoising as a bi-level optimization problem.
The inner optimization aims to derive an effective model for the recommendation, as well as guiding the weight determination.
We employ a weight generator to avoid the storage of weights and a one-step gradient-matching-based loss to significantly reduce computational time.
- Score: 31.968068788022403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The acquisition of explicit user feedback (e.g., ratings) in real-world
recommender systems is often hindered by the need for active user involvement.
To mitigate this issue, implicit feedback (e.g., clicks) generated during user
browsing is exploited as a viable substitute. However, implicit feedback
possesses a high degree of noise, which significantly undermines recommendation
quality. While many methods have been proposed to address this issue by
assigning varying weights to implicit feedback, two shortcomings persist: (1)
the weight calculation in these methods is iteration-independent, without
considering the influence of weights in previous iterations, and (2) the weight
calculation often relies on prior knowledge, which may not always be readily
available or universally applicable.
To overcome these two limitations, we model recommendation denoising as a
bi-level optimization problem. The inner optimization aims to derive an
effective model for the recommendation, as well as guiding the weight
determination, thereby eliminating the need for prior knowledge. The outer
optimization leverages gradients of the inner optimization and adjusts the
weights in a manner considering the impact of previous weights. To efficiently
solve this bi-level optimization problem, we employ a weight generator to avoid
the storage of weights and a one-step gradient-matching-based loss to
significantly reduce computational time. The experimental results on three
benchmark datasets demonstrate that our proposed approach outperforms both
state-of-the-art general and denoising recommendation models. The code is
available at https://github.com/CoderWZW/BOD.
Related papers
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
We propose an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models.
Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods.
arXiv Detail & Related papers (2024-04-05T13:58:51Z) - Fast Optimization of Weighted Sparse Decision Trees for use in Optimal
Treatment Regimes and Optimal Policy Design [16.512942230284576]
We present three algorithms for efficient sparse weighted decision tree optimization.
The first approach directly optimize the weighted loss function; however, it tends to be computationally inefficient for large datasets.
Second approach, which scales more efficiently, transforms weights to integer values and uses data duplication to transform the weighted decision tree optimization problem into an unweighted (but larger) counterpart.
Third algorithm, which scales to much larger datasets, uses a randomized procedure that samples each data point with a probability proportional to its weight.
arXiv Detail & Related papers (2022-10-13T08:16:03Z) - SPR:Supervised Personalized Ranking Based on Prior Knowledge for
Recommendation [6.407166061614783]
We propose a novel loss function named Supervised Personalized Ranking (SPR) Based on Prior Knowledge.
Unlike BPR, instead of constructing user, positive item, negative item> triples, the proposed SPR constructs user, similar user, positive item, negative item> quadruples.
arXiv Detail & Related papers (2022-07-07T10:00:54Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Bayesian Non-stationary Linear Bandits for Large-Scale Recommender
Systems [6.009759445555003]
We build upon the linear contextual multi-armed bandit framework to address this problem.
We develop a decision-making policy for a linear bandit problem with high-dimensional feature vectors.
Our proposed recommender system employs this policy to learn the users' item preferences online while minimizing runtime.
arXiv Detail & Related papers (2022-02-07T13:51:19Z) - Predict and Optimize: Through the Lens of Learning to Rank [9.434400627011108]
We show the noise contrastive estimation can be considered a case of learning to rank the solution cache.
We also develop pairwise and listwise ranking loss functions, which can be differentiated in closed form without the need of solving the optimization problem.
arXiv Detail & Related papers (2021-12-07T10:11:44Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
We investigate non-batch optimization problems where the objective is an expectation over smooth loss functions.
Our work builds on the STORM algorithm, in conjunction with a novel approach to adaptively set the learning rate and momentum parameters.
arXiv Detail & Related papers (2021-11-01T15:43:36Z) - A Generalised Inverse Reinforcement Learning Framework [24.316047317028147]
inverse Reinforcement Learning (IRL) is to estimate the unknown cost function of some MDP base on observed trajectories.
We introduce an alternative training loss that puts more weights on future states which yields a reformulation of the (maximum entropy) IRL problem.
The algorithms we devised exhibit enhanced performances (and similar tractability) than off-the-shelf ones in multiple OpenAI gym environments.
arXiv Detail & Related papers (2021-05-25T10:30:45Z) - Regret-Optimal Filtering [57.51328978669528]
We consider the problem of filtering in linear state-space models through the lens of regret optimization.
We formulate a novel criterion for filter design based on the concept of regret between the estimation error energy of a clairvoyant estimator.
We show that the regret-optimal estimator can be easily implemented by solving three Riccati equations and a single Lyapunov equation.
arXiv Detail & Related papers (2021-01-25T19:06:52Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation.
We propose a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications.
Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions.
arXiv Detail & Related papers (2020-10-12T17:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.