Undertrained Image Reconstruction for Realistic Degradation in Blind Image Super-Resolution
- URL: http://arxiv.org/abs/2503.02767v1
- Date: Tue, 04 Mar 2025 16:33:58 GMT
- Title: Undertrained Image Reconstruction for Realistic Degradation in Blind Image Super-Resolution
- Authors: Ru Ito, Supatta Viriyavisuthisakul, Kazuhiko Kawamoto, Hiroshi Kera,
- Abstract summary: Super-resolution (SR) models struggle with real-world low-resolution (LR) images.<n>Most SR models perform poorly on real-world LR images.<n>This study proposes a dataset generation method using undertrained image reconstruction models.
- Score: 4.849820402342814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most super-resolution (SR) models struggle with real-world low-resolution (LR) images. This issue arises because the degradation characteristics in the synthetic datasets differ from those in real-world LR images. Since SR models are trained on pairs of high-resolution (HR) and LR images generated by downsampling, they are optimized for simple degradation. However, real-world LR images contain complex degradation caused by factors such as the imaging process and JPEG compression. Due to these differences in degradation characteristics, most SR models perform poorly on real-world LR images. This study proposes a dataset generation method using undertrained image reconstruction models. These models have the property of reconstructing low-quality images with diverse degradation from input images. By leveraging this property, this study generates LR images with diverse degradation from HR images to construct the datasets. Fine-tuning pre-trained SR models on our generated datasets improves noise removal and blur reduction, enhancing performance on real-world LR images. Furthermore, an analysis of the datasets reveals that degradation diversity contributes to performance improvements, whereas color differences between HR and LR images may degrade performance. 11 pages, (11 figures and 2 tables)
Related papers
- Unveiling Hidden Details: A RAW Data-Enhanced Paradigm for Real-World Super-Resolution [56.98910228239627]
Real-world image super-resolution (Real SR) aims to generate high-fidelity, detail-rich high-resolution (HR) images from low-resolution (LR) counterparts.
Existing Real SR methods primarily focus on generating details from the LR RGB domain, often leading to a lack of richness or fidelity in fine details.
We pioneer the use of details hidden in RAW data to complement existing RGB-only methods, yielding superior outputs.
arXiv Detail & Related papers (2024-11-16T13:29:50Z) - Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
We propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly.
Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-10-08T01:48:34Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Benefiting from Bicubically Down-Sampled Images for Learning Real-World
Image Super-Resolution [22.339751911637077]
We propose to handle real-world SR by splitting this ill-posed problem into two comparatively more well-posed steps.
First, we train a network to transform real LR images to the space of bicubically downsampled images in a supervised manner.
Second, we take a generic SR network trained on bicubically downsampled images to super-resolve the transformed LR image.
arXiv Detail & Related papers (2020-07-06T20:27:58Z) - Closed-loop Matters: Dual Regression Networks for Single Image
Super-Resolution [73.86924594746884]
Deep neural networks have exhibited promising performance in image super-resolution.
These networks learn a nonlinear mapping function from low-resolution (LR) images to high-resolution (HR) images.
We propose a dual regression scheme by introducing an additional constraint on LR data to reduce the space of the possible functions.
arXiv Detail & Related papers (2020-03-16T04:23:42Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.