Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models
- URL: http://arxiv.org/abs/2110.10755v1
- Date: Wed, 20 Oct 2021 19:53:48 GMT
- Title: Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models
- Authors: Rui Ma, Johnathan Czernik, Xian Du
- Abstract summary: Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs.
We propose a novel supervised method to simulate an unknown degradation process with the inclusion of prior hardware knowledge.
Experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation.
- Score: 3.9037347042028254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most single image super-resolution (SR) methods are developed on synthetic
low-resolution (LR) and high-resolution (HR) image pairs, which are simulated
by a predetermined degradation operation, e.g., bicubic downsampling. However,
these methods only learn the inverse process of the predetermined operation, so
they fail to super resolve the real-world LR images; the true formulation
deviates from the predetermined operation. To address this problem, we propose
a novel supervised method to simulate an unknown degradation process with the
inclusion of the prior hardware knowledge of the imaging system. We design an
adaptive blurring layer (ABL) in the supervised learning framework to estimate
the target LR images. The hyperparameters of the ABL can be adjusted for
different imaging hardware. The experiments on the real-world datasets validate
that our degradation model can estimate LR images more accurately than the
predetermined degradation operation, as well as facilitate existing SR methods
to perform reconstructions on real-world LR images more accurately than the
conventional approaches.
Related papers
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
This study proposes a novel method to simulate an unknown downsampling process without imposing restrictive prior knowledge.
We propose a generalizable low-frequency loss (LFL) in the adversarial training framework to imitate the distribution of target LR images without using any paired examples.
arXiv Detail & Related papers (2021-09-08T06:00:32Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.