論文の概要: Video super-resolution for single-photon LIDAR
- arxiv url: http://arxiv.org/abs/2210.10474v1
- Date: Wed, 19 Oct 2022 11:33:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 15:48:06.740892
- Title: Video super-resolution for single-photon LIDAR
- Title(参考訳): 単一光子LIDARのためのビデオ超解像
- Authors: Germ\'an Mora Mart\'in, Stirling Scholes, Alice Ruget, Robert K.
Henderson, Jonathan Leach, Istvan Gyongy
- Abstract要約: 3D Time-of-Flight (ToF)イメージセンサーは、自動運転車、拡張現実(AR)、ロボット工学などの用途で広く利用されている。
本稿では,合成深度シーケンスを用いて3次元畳み込みニューラルネットワーク(CNN)を学習し,x4深度データを復調・アップスケーリングする。
GPUアクセラレーションでは、フレームは毎秒30フレーム以上で処理され、障害物回避に必要な低遅延イメージングに適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Time-of-Flight (ToF) image sensors are used widely in applications such as
self-driving cars, Augmented Reality (AR) and robotics. When implemented with
Single-Photon Avalanche Diodes (SPADs), compact, array format sensors can be
made that offer accurate depth maps over long distances, without the need for
mechanical scanning. However, array sizes tend to be small, leading to low
lateral resolution, which combined with low Signal-to-Noise Ratio (SNR) levels
under high ambient illumination, may lead to difficulties in scene
interpretation. In this paper, we use synthetic depth sequences to train a 3D
Convolutional Neural Network (CNN) for denoising and upscaling (x4) depth data.
Experimental results, based on synthetic as well as real ToF data, are used to
demonstrate the effectiveness of the scheme. With GPU acceleration, frames are
processed at >30 frames per second, making the approach suitable for
low-latency imaging, as required for obstacle avoidance.
- Abstract(参考訳): 3d time-of(tof)イメージセンサーは、自動運転車、拡張現実(ar)、ロボティクスなどのアプリケーションで広く使われている。
単光雪崩ダイオード(SPAD)で実装すると、機械的スキャンを必要とせずに、長距離にわたって正確な深度マップを提供するコンパクトな配列型センサーが作成できる。
しかし、配列のサイズは小さく、低い横分解能となり、高い環境照明下では低信号対雑音比(snr)のレベルと相まって、シーン解釈が困難になる可能性がある。
本稿では,合成深度シーケンスを用いて3次元畳み込みニューラルネットワーク(CNN)を学習し,x4深度データを復調・アップスケーリングする。
提案手法の有効性を実証するために, 合成および実ToFデータに基づく実験結果を用いた。
gpuアクセラレーションでは、フレームは毎秒30フレーム以上で処理され、障害物回避に必要な低遅延イメージングに適している。
関連論文リスト
- SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving [6.221538885604869]
カメラとライダーデータのセンサリアリスティックレンダリングのための既存のニューラル放射場(NeRF)法は、低レンダリング速度に悩まされている。
SplatADは,カメラとライダーデータの両方の動的シーンをリアルかつリアルタイムにレンダリングするための,最初の3DGSベースの手法である。
論文 参考訳(メタデータ) (2024-11-25T16:18:22Z) - Depth Map Denoising Network and Lightweight Fusion Network for Enhanced
3D Face Recognition [61.27785140017464]
本稿では,ノイズを低減するために,DIIF(Denoising Implicit Image Function)に基づくDMDNet(Depth Map Denoising Network)を提案する。
さらに,光深度と標準核融合ネットワーク(LDNFNet)と呼ばれる強力な認識ネットワークを設計し,異なるモード間の特徴と相補的特徴を学習する。
論文 参考訳(メタデータ) (2024-01-01T10:46:42Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - Real-Time Radiance Fields for Single-Image Portrait View Synthesis [85.32826349697972]
本研究では,1つの未提示画像からリアルタイムに3D表現を推測・描画するワンショット手法を提案する。
一つのRGB入力が与えられた場合、画像エンコーダは、ボリュームレンダリングによる3次元新規ビュー合成のためのニューラルラディアンスフィールドの標準三面体表現を直接予測する。
提案手法は消費者ハードウェア上で高速(24fps)であり,テスト時間最適化を必要とする強力なGAN反転ベースラインよりも高品質な結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T17:56:01Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
2秒で取得した12メガピクセルのRAWフレームの「長バースト」では,自然手震動のみからの視差情報で高品質のシーン深度を回復できることが示されている。
我々は、長時間バーストデータにニューラルRGB-D表現を適合させるテスト時間最適化手法を考案し、シーン深度とカメラモーションを同時に推定する。
論文 参考訳(メタデータ) (2022-12-22T18:54:34Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - Deep Parametric 3D Filters for Joint Video Denoising and Illumination
Enhancement in Video Super Resolution [96.89588203312451]
本稿では,Deep Parametric 3D Filters (DP3DF) と呼ばれる新しいパラメトリック表現を提案する。
DP3DFは、ローカル情報を組み込んで、単一エンコーダ/デコーダネットワークにおいて、同時復調、照明強化、SRを効率的に実現している。
また、動的残留フレームを共有バックボーンを介してDP3DFと共同で学習し、SR品質をさらに向上させる。
論文 参考訳(メタデータ) (2022-07-05T03:57:25Z) - A Low Memory Footprint Quantized Neural Network for Depth Completion of
Very Sparse Time-of-Flight Depth Maps [14.885472968649937]
室内3次元知覚のためのToFデータセットのシミュレーションを行った。
本モデルでは,入力前処理と注意深く調整したトレーニングにより,最適深度マップの品質を実現する。
また、重み付けとアクティベーションのための低メモリフットプリントを、混合精度量子化-トレーニング技術により達成する。
論文 参考訳(メタデータ) (2022-05-25T17:11:31Z) - Single-Photon Structured Light [31.614032717665832]
単一光子構造光」は、露光中の光子到着の有無を示すバイナリイメージを検知することで機能する。
本研究では,プロジェクタやカメラデフォーカスのような短距離効果に対して頑健に設計した誤り訂正符号を用いた新しい時間系列を開発する。
我々の実験室のプロトタイプは、非常に低いアルベドや高速な動きの物体を含む困難なシナリオで3Dイメージングを行うことができる。
論文 参考訳(メタデータ) (2022-04-11T17:57:04Z) - High-speed object detection with a single-photon time-of-flight image
sensor [2.648554238948439]
我々は,64×32の空間解像度で16ビンの光子タイミングヒストグラムを出力する携帯型SPADカメラシステムの結果を報告する。
結果は、人間の反応時間よりも早く恩恵を受けるであろう安全クリティカルなコンピュータビジョンアプリケーションに関係している。
論文 参考訳(メタデータ) (2021-07-28T14:53:44Z) - Robust super-resolution depth imaging via a multi-feature fusion deep
network [2.351601888896043]
単一光子感度検出器(SPAD)アレイによる光検出・測光(LIDAR)は、高フレームレートで深度画像の取得を可能にする新興技術である。
我々は、カメラのヒストグラムデータから抽出できる複数の特徴を活用するために構築されたディープネットワークを開発する。
ネットワークを様々な3Dデータに適用し,デノナイジングと4倍の解像度の深度向上を実証する。
論文 参考訳(メタデータ) (2020-11-20T14:24:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。