論文の概要: ADPS: Asymmetric Distillation Post-Segmentation Method for Image Anomaly
Detection
- arxiv url: http://arxiv.org/abs/2210.10495v2
- Date: Thu, 20 Jul 2023 16:33:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 16:37:10.341112
- Title: ADPS: Asymmetric Distillation Post-Segmentation Method for Image Anomaly
Detection
- Title(参考訳): ADPS:画像異常検出のための非対称蒸留後分離法
- Authors: Peng Xing, Hao Tang, Jinhui Tang, Zechao Li
- Abstract要約: 知識蒸留に基づく異常検出 (KDAD) 法は, 異常領域を検出し, セグメント化するために, 教師学生のパラダイムに頼っている。
非対称蒸留ポストセグメンテーション(ADPS)と呼ばれる革新的なアプローチを提案する。
我々のADPSは、教師-学生ネットワークの入力と同じイメージの異なる形態の非対称蒸留パラダイムを採用している。
ADPSは,MVTec ADとKolektorSDD2データセットで平均精度(AP)を9%,20%向上させることを示した。
- 参考スコア(独自算出の注目度): 75.68023968735523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Distillation-based Anomaly Detection (KDAD) methods rely on the
teacher-student paradigm to detect and segment anomalous regions by contrasting
the unique features extracted by both networks. However, existing KDAD methods
suffer from two main limitations: 1) the student network can effortlessly
replicate the teacher network's representations, and 2) the features of the
teacher network serve solely as a ``reference standard" and are not fully
leveraged. Toward this end, we depart from the established paradigm and instead
propose an innovative approach called Asymmetric Distillation Post-Segmentation
(ADPS). Our ADPS employs an asymmetric distillation paradigm that takes
distinct forms of the same image as the input of the teacher-student networks,
driving the student network to learn discriminating representations for
anomalous regions.
Meanwhile, a customized Weight Mask Block (WMB) is proposed to generate a
coarse anomaly localization mask that transfers the distilled knowledge
acquired from the asymmetric paradigm to the teacher network. Equipped with
WMB, the proposed Post-Segmentation Module (PSM) is able to effectively detect
and segment abnormal regions with fine structures and clear boundaries.
Experimental results demonstrate that the proposed ADPS outperforms the
state-of-the-art methods in detecting and segmenting anomalies. Surprisingly,
ADPS significantly improves Average Precision (AP) metric by 9% and 20% on the
MVTec AD and KolektorSDD2 datasets, respectively.
- Abstract(参考訳): 知識蒸留に基づく異常検出(KDAD)手法は,両ネットワークが抽出した特徴を対比することにより,異常領域の検出とセグメント化を行う教師学生パラダイムに依存している。
しかし、既存のKDADメソッドには2つの制限がある。
1)生徒ネットワークは、教師ネットワークの表現を必死に再現することができ、
2)教師ネットワークの特徴は「参照基準」としてのみ機能し,完全に活用されていない。
この目的のために、確立されたパラダイムから離れ、代わりに非対称蒸留ポストセグメンテーション(ADPS)と呼ばれる革新的なアプローチを提案する。
我々のADPSは教師-学生ネットワークの入力と同一の画像の異なる形態の非対称蒸留パラダイムを採用し、学生ネットワークに異常領域の識別表現を学習させる。
一方,非対称パラダイムから得られた蒸留知識を教師ネットワークに伝達する粗い局所化マスクを生成するために,カスタマイズされた重みマスクブロック(wmb)を提案する。
WMBを組み込んだPSM(Post-Segmentation Module)は,微細な構造と明確な境界を持つ異常領域を効果的に検出し,分割することができる。
実験の結果,ADPSは異常の検出とセグメント化において最先端の手法よりも優れていた。
驚いたことに、ADPSは平均精度(AP)を、MVTec ADとKolektorSDD2データセットでそれぞれ9%、20%改善している。
関連論文リスト
- Dual-Modeling Decouple Distillation for Unsupervised Anomaly Detection [15.89869857998053]
教師ネットワークへの学生ネットワークの過度な一般化は、異常の表現能力に無視できない違いをもたらす可能性がある。
既存の手法では, 生徒と教師を構造的観点から区別することで, オーバージェネリゼーションの可能性に対処する。
本稿では,非教師付き異常検出のためのDual-Modeling Deouple Distillation (DMDD)を提案する。
論文 参考訳(メタデータ) (2024-08-07T16:39:16Z) - DFMSD: Dual Feature Masking Stage-wise Knowledge Distillation for Object Detection [6.371066478190595]
DFMSDと呼ばれる新しい二重特徴マスキングヘテロジニアス蒸留フレームワークがオブジェクト検出のために提案されている。
マスキング強化戦略とステージワイズ学習を組み合わせて特徴マスキング再構築を改善する。
オブジェクト検出タスクの実験は、我々のアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-07-18T04:19:14Z) - Structural Teacher-Student Normality Learning for Multi-Class Anomaly
Detection and Localization [17.543208086457234]
SNL(Structure Teacher-Student Normality Learning)と呼ばれる新しいアプローチを導入する。
提案手法をMVTecADとVisAの2つの異常検出データセットで評価した。
この方法では, MVTecADが3.9%, MVTecADが1.5%, VisAが1.2%, 2.5%と, 最先端の蒸留アルゴリズムをはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-27T00:02:24Z) - Dual-Student Knowledge Distillation Networks for Unsupervised Anomaly
Detection [2.06682776181122]
学生教師ネットワーク(S-T)は教師なしの異常検出に好まれる。
しかし、バニラS-Tネットワークは安定ではない。
本稿では,新しい知識蒸留アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-02-01T09:32:39Z) - Subject-Independent Deep Architecture for EEG-based Motor Imagery
Classification [0.5439020425819]
脳波(EEG)に基づく運動脳波(MI)分類は、非侵襲的脳-コンピュータインタフェース(BCI)システムにおいて広く用いられている手法である。
我々は、新しい主題に依存しない半教師付き深層構造(SSDA)を提案する。
提案されたSSDAは、教師なし要素と教師なし要素の2つの部分から構成される。
論文 参考訳(メタデータ) (2024-01-27T23:05:51Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
連続的テスト時間適応(CTTA)は、ソース事前学習モデルから目標分布の連続的な変化に移行するために提案される。
提案手法は,CTTAタスクの分類とセグメンテーションの両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T15:34:52Z) - Weakly Supervised Semantic Segmentation via Alternative Self-Dual
Teaching [82.71578668091914]
本稿では,分類とマスク・リファインメント・コンポーネントを統合された深層モデルに組み込む,コンパクトな学習フレームワークを確立する。
本稿では,高品質な知識相互作用を促進するために,新たな自己双対学習(ASDT)機構を提案する。
論文 参考訳(メタデータ) (2021-12-17T11:56:56Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。