論文の概要: Predicting Oxide Glass Properties with Low Complexity Neural Network and
Physical and Chemical Descriptors
- arxiv url: http://arxiv.org/abs/2210.10507v1
- Date: Wed, 19 Oct 2022 12:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 15:40:22.789886
- Title: Predicting Oxide Glass Properties with Low Complexity Neural Network and
Physical and Chemical Descriptors
- Title(参考訳): 低複雑性ニューラルネットワークと物理・化学ディスクリプタによる酸化物ガラス特性の予測
- Authors: Suresh Bishnoi, Skyler Badge, Jayadeva and N. M. Anoop Krishnan
- Abstract要約: 酸化物ガラスの特性予測性能を向上させる低複雑性ニューラルネットワーク(LCNN)を提案する。
ガラス部品の大規模なデータセット(50000)をトレーニングすることにより、LCNNはXGBoostのような最先端のアルゴリズムより優れていることを示す。
LCNNモデルの普遍性を,オリジナルトレーニングセットに存在しない新しいコンポーネントを持つ眼鏡の特性を予測して示す。
- 参考スコア(独自算出の注目度): 1.8734449181723827
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to their disordered structure, glasses present a unique challenge in
predicting the composition-property relationships. Recently, several attempts
have been made to predict the glass properties using machine learning
techniques. However, these techniques have the limitations, namely, (i)
predictions are limited to the components that are present in the original
dataset, and (ii) predictions towards the extreme values of the properties,
important regions for new materials discovery, are not very reliable due to the
sparse datapoints in this region. To address these challenges, here we present
a low complexity neural network (LCNN) that provides improved performance in
predicting the properties of oxide glasses. In addition, we combine the LCNN
with physical and chemical descriptors that allow the development of universal
models that can provide predictions for components beyond the training set. By
training on a large dataset (~50000) of glass components, we show the LCNN
outperforms state-of-the-art algorithms such as XGBoost. In addition, we
interpret the LCNN models using Shapely additive explanations to gain insights
into the role played by the descriptors in governing the property. Finally, we
demonstrate the universality of the LCNN models by predicting the properties
for glasses with new components that were not present in the original training
set. Altogether, the present approach provides a promising direction towards
accelerated discovery of novel glass compositions.
- Abstract(参考訳): 構造が乱れていたため、眼鏡は合成-プロパティ関係を予測するのに独特な挑戦となる。
近年,機械学習技術を用いてガラス特性を予測する試みがいくつか行われている。
しかしこれらの技術には 限界があります
(i)予測は、元のデータセットに存在するコンポーネントに限定されており、
(ii)新材料発見の重要な領域である特性の極端値に対する予測は、この領域におけるデータポイントが乏しいため、あまり信頼できない。
これらの課題に対処するため,酸化ガラスの特性予測性能を向上させる低複雑性ニューラルネットワーク(LCNN)を提案する。
さらに、LCNNと物理および化学的記述子を組み合わせることで、トレーニングセットを超えたコンポーネントの予測を提供するユニバーサルモデルの開発を可能にします。
ガラス部品の大規模なデータセット(約50000)をトレーニングすることにより、LCNNはXGBoostのような最先端のアルゴリズムより優れていることを示す。
さらに, LCNNモデルについて, 形状付加的な説明を用いて解釈し, プロパティ管理において記述者が果たす役割について考察する。
最後に、LCNNモデルの普遍性を、オリジナルトレーニングセットに存在しない新しいコンポーネントを持つ眼鏡の特性を予測することによって示す。
また, 本手法は, 新規なガラス組成の発見を加速するための有望な方向を提供する。
関連論文リスト
- Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
グラフニューラルネットワーク(GNN)の分析能力と大規模言語モデル(LLM)の言語生成・予測能力を利用する多モード融合(MMF)フレームワークを提案する。
本フレームワークは,グラフ構造化データのモデリングにおけるGNNの有効性とLLMのゼロショットおよび少数ショット学習能力を組み合わせることにより,オーバーフィッティングのリスクを低減し,予測の改善を実現する。
論文 参考訳(メタデータ) (2024-08-27T11:10:39Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Substitutional Alloying Using Crystal Graph Neural Networks [0.0]
グラフニューラルネットワーク(GNN)は、結晶によって形成されるグラフの直接学習表現を可能にする。
CGNNを用いてDFTレベルの精度で結晶特性を予測し、原子(ノード/頂点)、結合(エッジ)、大域状態の属性を符号化したグラフを通して予測する。
我々はDFT検証を行い、生成エネルギーと構造特性の予測精度を評価する。
論文 参考訳(メタデータ) (2023-06-19T08:18:17Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - Graph Contrastive Learning for Materials [6.667711415870472]
本稿では,CrystalCLRを紹介した。CrystalCLRは,Crystal Graph Neural Networkを用いた表現のコンストラクティブ学習のためのフレームワークである。
新たな損失関数が加わったことにより,我々のフレームワークは,工学的フィンガープリント手法と競合する表現を学習することができる。
また、モデル微調整により、対照的な事前学習により、物質特性の予測のためのグラフニューラルネットワークの性能が向上することを示した。
論文 参考訳(メタデータ) (2022-11-24T04:15:47Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
グラフニューラルネットワーク(GNN)は、材料科学者からますます注目を集めている。
本研究では,DimeNet++と混合密度ネットワークに基づくマルチタスク(MT)アーキテクチャを構築し,その性能向上を図る。
論文 参考訳(メタデータ) (2022-09-15T13:52:15Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
本稿では、最近開発されたAtomistic Line Graph Neural Network(ALIGNN)を拡張して、大量の材料ユニットセル構造のDOSを正確に予測する。
本研究では, 直接離散化スペクトルと, オートエンコーダを用いた圧縮低次元表現の2つの方法を評価する。
論文 参考訳(メタデータ) (2022-01-20T18:28:22Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
本稿では,結晶グラフ畳み込みニューラルネットワークフレームワークであるOrbital Graph Convolutional Neural Network (OGCNN)を提案する。
OGCNNには、材料特性を堅牢な方法で学習する原子軌道相互作用機能が含まれている。
本研究では, このモデルの性能について, 様々な特性を予測するために, 広範囲の結晶材料データを用いて検討した。
論文 参考訳(メタデータ) (2020-08-14T15:22:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。