論文の概要: Substitutional Alloying Using Crystal Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2306.10766v1
- Date: Mon, 19 Jun 2023 08:18:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 18:37:16.810776
- Title: Substitutional Alloying Using Crystal Graph Neural Networks
- Title(参考訳): 結晶グラフニューラルネットワークを用いた置換アロイング
- Authors: Dario Massa, Daniel Cie\'sli\'nski, Amirhossein Naghdi and Stefanos
Papanikolaou
- Abstract要約: グラフニューラルネットワーク(GNN)は、結晶によって形成されるグラフの直接学習表現を可能にする。
CGNNを用いてDFTレベルの精度で結晶特性を予測し、原子(ノード/頂点)、結合(エッジ)、大域状態の属性を符号化したグラフを通して予測する。
我々はDFT検証を行い、生成エネルギーと構造特性の予測精度を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Materials discovery, especially for applications that require extreme
operating conditions, requires extensive testing that naturally limits the
ability to inquire the wealth of possible compositions. Machine Learning (ML)
has nowadays a well established role in facilitating this effort in systematic
ways. The increasing amount of available accurate DFT data represents a solid
basis upon which new ML models can be trained and tested. While conventional
models rely on static descriptors, generally suitable for a limited class of
systems, the flexibility of Graph Neural Networks (GNNs) allows for direct
learning representations on graphs, such as the ones formed by crystals. We
utilize crystal graph neural networks (CGNN) to predict crystal properties with
DFT level accuracy, through graphs with encoding of the atomic (node/vertex),
bond (edge), and global state attributes. In this work, we aim at testing the
ability of the CGNN MegNet framework in predicting a number of properties of
systems previously unseen from the model, obtained by adding a substitutional
defect in bulk crystals that are included in the training set. We perform DFT
validation to assess the accuracy in the prediction of formation energies and
structural features (such as elastic moduli). Using CGNNs, one may identify
promising paths in alloy discovery.
- Abstract(参考訳): 材料発見、特に極度の操作条件を必要とするアプリケーションには、可能な構成の富を問う能力を自然に制限する広範囲なテストが必要である。
機械学習(ML)は近年,この取り組みを体系的な方法で促進する上で,十分に確立された役割を担っている。
利用可能な正確なDFTデータの量の増加は、新しいMLモデルをトレーニングし、テストできる確固たる基盤である。
従来のモデルは静的記述子に依存しており、一般に限られた種類のシステムに適合するが、グラフニューラルネットワーク(GNN)の柔軟性により、結晶によって形成されたようなグラフ上で直接学習できる。
結晶グラフニューラルネットワーク(CGNN)を用いて、原子(ノード/頂点)、結合(エッジ)、大域状態属性を符号化したグラフを用いて、DFTレベルの精度で結晶特性を予測する。
本研究では,トレーニングセットに含まれるバルク結晶に置換欠陥を加えることで,これまで見られなかったシステムの特性をモデルから予測するCGNN MegNetフレームワークの能力をテストすることを目的とする。
生成エネルギーと構造特性(弾性変調など)の予測精度を評価するためにDFT検証を行う。
CGNNを用いて、合金発見における有望な経路を特定することができる。
関連論文リスト
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - CrysGNN : Distilling pre-trained knowledge to enhance property
prediction for crystalline materials [25.622724168215097]
本稿では結晶材料のための新しいトレーニング済みGNNフレームワークであるCrysGNNについて述べる。
これは、未ラベルの材料データを用いて、結晶グラフのノードレベルとグラフレベルの構造情報をキャプチャする。
我々は、事前訓練されたモデルから知識を抽出することで、全てのSOTAアルゴリズムがベニラバージョンを良好なマージンで上回ることができることを示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-01-14T08:12:01Z) - Graph Contrastive Learning for Materials [6.667711415870472]
本稿では,CrystalCLRを紹介した。CrystalCLRは,Crystal Graph Neural Networkを用いた表現のコンストラクティブ学習のためのフレームワークである。
新たな損失関数が加わったことにより,我々のフレームワークは,工学的フィンガープリント手法と競合する表現を学習することができる。
また、モデル微調整により、対照的な事前学習により、物質特性の予測のためのグラフニューラルネットワークの性能が向上することを示した。
論文 参考訳(メタデータ) (2022-11-24T04:15:47Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
グラフ構造化データ(DFAD-GNN)を用いたデータフリー逆知識蒸留のための第1のエンドツーエンドフレームワークを提案する。
具体的には、DFAD-GNNは、教師モデルと学生モデルとを2つの識別器とみなし、教師モデルから学生モデルに知識を抽出するために学習グラフを導出するジェネレータという、主に3つの成分からなる生成的対向ネットワークを採用している。
我々のDFAD-GNNは、グラフ分類タスクにおける最先端のデータフリーベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2022-05-08T08:19:40Z) - Crystal Twins: Self-supervised Learning for Crystalline Material
Property Prediction [8.048439531116367]
結晶性物質特性予測のためのSSL法であるCrystal Twins(CT)を紹介する。
我々は、拡張インスタンスのグラフ潜在埋め込みに冗長性低減原理を適用して、グラフニューラルネットワーク(GNN)を事前訓練する。
回帰タスクのGNNを微調整する際の事前学習重みの共有により、7つの課題のある材料特性予測ベンチマークの性能を著しく改善する。
論文 参考訳(メタデータ) (2022-05-04T05:08:46Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
Neural ODE Processモデルを拡張して、Learning Using Privileged Information設定内の追加情報を使用します。
シミュレーション動的タスクの精度とキャリブレーションを向上した実験により拡張性を検証する。
論文 参考訳(メタデータ) (2021-04-29T12:18:02Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。