論文の概要: RecipeMind: Guiding Ingredient Choices from Food Pairing to Recipe
Completion using Cascaded Set Transformer
- arxiv url: http://arxiv.org/abs/2210.10628v1
- Date: Fri, 14 Oct 2022 06:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 20:18:27.767109
- Title: RecipeMind: Guiding Ingredient Choices from Food Pairing to Recipe
Completion using Cascaded Set Transformer
- Title(参考訳): recipemind:カスケードセットトランスフォーマーを用いた食品ペアリングからレシピ完成までの成分選択の誘導
- Authors: Mogan Gim, Donghee Choi, Kana Maruyama, Jihun Choi, Hajung Kim,
Donghyeon Park and Jaewoo Kang
- Abstract要約: RecipeMindは、食品親和性スコア予測モデルであり、他の成分セットに材料を追加することの適合性を定量化する。
食品親和性スコア予測におけるレシピミンドの学習・評価のために, 成分共起に基づくスコアを含む大規模データセットを構築した。
- 参考スコア(独自算出の注目度): 15.170251924099807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a computational approach for recipe ideation, a downstream task
that helps users select and gather ingredients for creating dishes. To perform
this task, we developed RecipeMind, a food affinity score prediction model that
quantifies the suitability of adding an ingredient to set of other ingredients.
We constructed a large-scale dataset containing ingredient co-occurrence based
scores to train and evaluate RecipeMind on food affinity score prediction.
Deployed in recipe ideation, RecipeMind helps the user expand an initial set of
ingredients by suggesting additional ingredients. Experiments and qualitative
analysis show RecipeMind's potential in fulfilling its assistive role in
cuisine domain.
- Abstract(参考訳): そこで本研究では,ユーザが料理を作るための材料を選択・収集するための下流タスクであるレシピ・アイデアのための計算手法を提案する。
そこで本研究では,食品親和性スコア予測モデルである recipemind を開発した。
食品親和性スコア予測に基づくレシピマインドを訓練し,評価するために,成分共起スコアを含む大規模データセットを構築した。
recipemindはレシピイデオレーションでデプロイされ、ユーザーが追加の材料を提案することで、最初の材料セットを拡張するのに役立つ。
実験と質的な分析は、料理分野におけるRecipeMindの補助的役割を果たす可能性を示している。
関連論文リスト
- Retrieval Augmented Recipe Generation [96.43285670458803]
本稿では,レシピ生成のための拡張型大規模マルチモーダルモデルを提案する。
既存のデータストアからサプリメントとして、イメージにセマンティックに関連付けられたレシピを検索する。
生成したレシピ候補間の一貫性を計算し、異なる検索レシピを生成のコンテキストとして使用する。
論文 参考訳(メタデータ) (2024-11-13T15:58:50Z) - KitchenScale: Learning to predict ingredient quantities from recipe
contexts [13.001618172288198]
KitchenScaleは、レシピのコンテキストからターゲットの材料量と測定単位を予測するモデルである。
本稿では,成分測定型分類,単位分類,量回帰タスクの3つのサブタスクからなる成分量予測タスクを定式化する。
新たに構築したデータセットとレコメンデーションの例での実験では、さまざまなレシピコンテキストに対するKitchenScaleの理解が示されています。
論文 参考訳(メタデータ) (2023-04-21T04:28:16Z) - Learning to Substitute Ingredients in Recipes [15.552549060863523]
食材代替によるパーソナライゼーションは、食生活のニーズや嗜好を満たすこと、潜在的なアレルゲンを避けること、およびすべての台所での料理探索を容易にする可能性がある。
標準化された分割、評価指標、ベースラインを備えた置換ペアのデータセットで構成されたベンチマークを構築します。
Ingredient Substitution Module (GISMo) は、レシピのコンテキストと、グラフ内にエンコードされた一般的な成分関係情報を利用して、妥当な代替品のランク付けを行う新しいモデルである。
我々は、GISMoが平均的相互ランクにおいて、最高のパフォーマンスベースラインをはるかに上回っているという総合的な実験的検証を通して示す。
論文 参考訳(メタデータ) (2023-02-15T21:49:23Z) - Counterfactual Recipe Generation: Exploring Compositional Generalization
in a Realistic Scenario [60.20197771545983]
本研究では,材料の変化に応じて基本レシピを変更するようモデルに依頼する,反現実的なレシピ生成タスクを設計する。
料理の知識を学習するモデルのために、中国語で大規模なレシピデータセットを収集する。
その結果、既存のモデルでは原文のスタイルを保ちながら素材の変更が困難であり、調整が必要なアクションを見逃すことがしばしばあった。
論文 参考訳(メタデータ) (2022-10-20T17:21:46Z) - Assistive Recipe Editing through Critiquing [34.1050269670062]
RecipeCritは階層的な自動エンコーダで、材料レベルの批判をレシピで編集する。
私たちの研究の主な革新は、ユーザーが予測された材料と対話することでレシピを編集できる教師なしのクオリティリングモジュールです。
論文 参考訳(メタデータ) (2022-05-05T05:52:27Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
本稿では,食品レシピ生成課題に取り組むために,構造認識ネットワーク(SGN)の新たな枠組みを提案する。
提案モデルは高品質でコヒーレントなレシピを作成でき、ベンチマークRecipe1Mデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-10-04T06:36:31Z) - SHARE: a System for Hierarchical Assistive Recipe Editing [5.508365014509761]
SHARE: 食生活制限のある家庭料理人を支援する階層的補助レシピ編集システムについて紹介する。
私たちの階層的なレシピエディタは、レシピの成分リストに必要な置換を行い、新しい成分を利用するための方向を書き換えます。
1つのレシピが7つの食事制約のうちの1つを満たす84k組の類似レシピのレシピペアデータセットを紹介する。
論文 参考訳(メタデータ) (2021-05-17T22:38:07Z) - Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers
and Self-supervised Learning [17.42688184238741]
近年, 生活における食品の重要性から, クロスモーダルなレシピ検索が注目されている。
本稿では,テキストおよび画像のエンコーダの確立と高性能化に基づく,簡易なエンド・ツー・エンドモデルを提案する。
提案手法は,Recipe1Mデータセットのクロスモーダルレシピ検索タスクにおける最新性能を実現する。
論文 参考訳(メタデータ) (2021-03-24T10:17:09Z) - Multi-modal Cooking Workflow Construction for Food Recipes [147.4435186953995]
ワークフロー構築のための最初の大規模データセットであるMM-ReSを構築した。
本稿では、視覚情報とテキスト情報の両方を利用して調理ワークフローを構築するニューラルエンコーダデコーダモデルを提案する。
論文 参考訳(メタデータ) (2020-08-20T18:31:25Z) - Decomposing Generation Networks with Structure Prediction for Recipe
Generation [142.047662926209]
本稿では,構造予測を伴うDGN(Decomposing Generation Networks)を提案する。
具体的には,調理指導を複数のフェーズに分割し,各フェーズに異なるサブジェネレータを割り当てる。
提案手法は, (i) 大域的構造予測成分を用いてレシピ構造を学習し, (ii) 予測された構造に基づいてサブジェネレータ出力成分でレシピ相を生成するという2つの新しいアイデアを含む。
論文 参考訳(メタデータ) (2020-07-27T08:47:50Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。