Review of the state of the art in autonomous artificial intelligence
- URL: http://arxiv.org/abs/2210.10659v1
- Date: Mon, 17 Oct 2022 09:31:51 GMT
- Title: Review of the state of the art in autonomous artificial intelligence
- Authors: Petar Radanliev, David De Roure
- Abstract summary: This article presents a new design for autonomous artificial intelligence (AI)
It describes a new autonomous AI system called AutoAI.
The methodology is used to assemble the design founded on self-improved algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a new design for autonomous artificial intelligence
(AI), based on the state-of-the-art algorithms, and describes a new autonomous
AI system called AutoAI. The methodology is used to assemble the design founded
on self-improved algorithms that use new and emerging sources of data (NEFD).
The objective of the article is to conceptualise the design of a novel AutoAI
algorithm. The conceptual approach is used to advance into building new and
improved algorithms. The article integrates and consolidates the findings from
existing literature and advances the AutoAI design into (1) using new and
emerging sources of data for teaching and training AI algorithms and (2)
enabling AI algorithms to use automated tools for training new and improved
algorithms. This approach is going beyond the state-of-the-art in AI algorithms
and suggests a design that enables autonomous algorithms to self-optimise and
self-adapt, and on a higher level, be capable to self-procreate.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
An artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time.
An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions.
This paper presents a small step towards producing an AGI.
arXiv Detail & Related papers (2024-06-17T07:21:44Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
This paper proposes a framework for automatically improving the performance of pre-trained Deep Learning (DL) classifiers using XAI methods.
We will call auto-encoder-based and encoder-decoder-based, and discuss their key aspects.
arXiv Detail & Related papers (2024-03-15T15:04:20Z) - Autonomous Vehicles: Evolution of Artificial Intelligence and Learning
Algorithms [0.0]
The study presents statistical insights into the usage and types of AI/learning algorithms over the years.
The paper highlights the pivotal role of parameters in refining algorithms for both trucks and cars.
It concludes by outlining different levels of autonomy, elucidating the nuanced usage of AI and learning algorithms.
arXiv Detail & Related papers (2024-02-27T17:07:18Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
We develop and experimentally validate the first fully self-reprogramming AI system.
Applying AI-based computer code generation to AI itself, we implement an algorithm with the ability to continuously modify and rewrite its own neural network source code.
arXiv Detail & Related papers (2022-04-30T05:44:34Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.